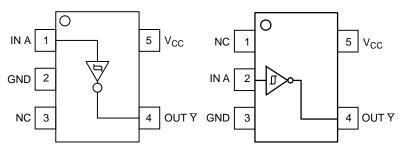
ON Semiconductor

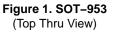
Is Now

Onsemi

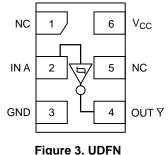
To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

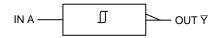

Schmitt Inverter

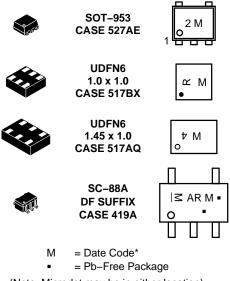

The NL17SG14 MiniGate[™] is an advanced high–speed CMOS Schmitt Inverter in ultra–small footprint.

The NL17SG14 input structure provides protection when voltages up to 4.6 V are applied.


Features

- Wide Operating V_{CC} Range: 0.9 V to 3.6 V
- High Speed: $t_{PD} = 3.7$ ns (Typ) at $V_{CC} = 3.0$ V, $C_L = 15$ pF
- Low Power Dissipation: $I_{CC} = 0.5 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- 4.6 V Overvoltage Tolerant (OVT) Input Pins
- Ultra-Small Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant




Figure 4. Logic Symbol

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT							
	SOT-953 SC-88A UDFN6						
1	IN A	NC	NC				
2	GND	IN A	IN A				
3	NC	GND	GND				
4	Ουτ γ	OUT Y	OUT 7				
5	V _{CC}	V _{CC}	NC				
6			V _{CC}				

FUNCTION TABLE

A Input	Y Output
L	Н
Н	L

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Paramete	er	Value	Unit
V _{CC}	DC Supply Voltage		–0.5 to +5.5	V
V _{IN}	DC Input Voltage		-0.5 to +4.6	V
V _{OUT}	DC Output Voltage	Output at High or Low State Power–Down Mode ($V_{CC} = 0 V$)	-0.5 to V _{CC} + 0.5 -0.5 to +4.6	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
Ι _{ΟΚ}	DC Output Diode Current	V _{OUT} < GND	-20	mA
I _{OUT}	DC Output Source/Sink Current		±20	mA
I _{CC}	DC Supply Current per Supply Pin		±20	mA
I _{GND}	DC Ground Current per Ground Pin		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Sec	conds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in	
V_{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3)	>2000 >100	V
ILATCHUP	Latchup Performance Above	V_{CC} and Below GND at 125°C (Note 4)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality Should not be assumed, damage may occur and reliability may be affected.
 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
 Tested to EIA/JESD22-A114-A.
 Tested to EIA/JESD22-A115-A.

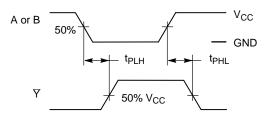
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	0.9	3.6	V
V _{IN}	Digital Input Voltage	0.0	3.6	V
V _{OUT}	Output Voltage Output at High or Low State Power–Down Mode (V _{CC} = 0 V)	0.0 0.0	V _{CC} 3.6	V
T _A	Operating Temperature Range	-55	+125	°C
Δt / ΔV	Input Transition Rise or Fail Rate	0	No Limit	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS


				V _{cc}	T _A = 25°C			–55°C ≤ T _A ≤ 125°C		
Symbol	Parameter	C	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{T+} Positive–Going Input Threshold Voltage			0.9	0.64	0.7	0.86	0.62	0.87		
				1.1	0.73	0.81	0.95	0.71	1	1
				1.4	0.86	0.94	1.16	0.84	1.2	
				1.65	0.95	1.06	1.25	0.94	1.3	V
				2.3	1.22	1.36	1.6	1.18	1.65	1
				3.0	1.51	1.8	2.05	1.38	2.1	1
V _{T-}	Negative-			0.9	0.09	0.23	0.30	0.08	0.33	
	Going Input Threshold			1.1	0.15	0.33	0.39	0.12	0.43	1
	Voltage			1.4	0.3	0.47	0.54	0.25	0.55	1
				1.65	0.35	0.6	0.65	0.3	0.65	V
				2.3	0.55	0.85	0.88	0.5	0.88	1
				3.0	0.95	1.13	1.16	0.9	1.16	1
V _H	Hysteresis			0.9	0.15	0.5	0.75	0.2	0.8	
	Voltage			1.1	0.15	0.5	0.75	0.2	0.8	1
				1.4	0.15	0.5	0.75	0.2	0.8	1
				1.65	0.15	0.5	0.75	0.2	0.8	V
				2.3	0.15	0.5	0.75	0.2	0.8	1
				3.0	0.25	0.65	0.85	0.3	0.9	1
V _{OH}	High-Level	V _{IN} =	I _{OH} = -20 μA	0.9	0.75			0.75		V
	Output Voltage	V _{IH} or V _{IL}	I _{OH} = -0.3 mA	1.1 to 1.3	0.75 x V _{CC}			0.75 x V _{CC}		
			I _{OH} = -1.7 mA	1.4 to 1.6	0.75 x V _{CC}			0.75 x V _{CC}		
			I _{OH} = -3.0 mA	1.65 to 1.95	V _{CC} – 0.45			V _{CC} – 0.45		
			I _{OH} = -4.0 mA	2.3 to 2.7	2.0			2.0		1
			I _{OH} = -8.0 mA	3.0 to 3.6	2.48			2.48		1
V _{OL}	Low-Level	V _{IN} =	I _{OL} = 20 μA	0.9			0.1		0.1	V
	Output Voltage	V _{IH} or V _{IL}	I _{OL} = 0.3 mA	1.1 to 1.3			0.25 x V _{CC}		0.25 x V _{CC}	
			I _{OL} = 1.7 mA	1.4 to 1.6			0.25xV CC		0.25 x V _{CC}	
			I _{OL} = 3.0 mA	1.65 to 1.95			0.45		0.45	
			I _{OL} = 4.0 mA	2.3 to 2.7			0.4		0.4	
			I _{OL} = 8.0 mA	3.0 to 3.6			0.4		0.4	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 3.6 V$		0 to 3.6			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	V _{IN} =	· V _{CC} or GND	3.6			0.5		10.0	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

			$T_{A} = 25 \ ^{\circ}C \qquad \qquad T_{A} = -55 \ ^{\circ}C \ to = -55 \ ^{\circ}C \ ^{\circ}C \ to = -55 \ ^{\circ}$	T _A = 25 °C55°C				;	
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	$C_{L} = 10 \text{ pF},$	0.9	-	27.3	-	_	-	ns
t _{PHL}	A or Y	$R_{L} = 1 M\Omega$	1.1 to 1.3	-	13.0	22.6	1.0	35.9	
			1.4 to 1.6	-	7.5	10.5	1.0	11.3	1
			1.65 to 1.95	-	6.0	7.8	1.0	8.2	1
			2.3 to 2.7	-	4.3	5.4	1.0	5.8	1
			3.0 to 3.6	-	3.5	4.4	1.0	4.6	
		$C_{L} = 15 pF,$	0.9	-	29.5	-	-	-	ns
		$R_{L} = 1 M\Omega$	1.1 to 1.3	-	14.3	25.1	1.0	41.6	
			1.4 to 1.6	-	8.0	11.5	1.0	12.6	
			1.65 to 1.95	-	6.3	8.4	1.0	8.7	
			2.3 to 2.7	-	4.6	5.7	1.0	6.1	1
			3.0 to 3.6	-	3.7	4.6	1.0	5.0	1
		$C_{L} = 30 \text{ pF},$	0.9	-	40.5	-	-	-	ns
		$R_L = 1 M\Omega$	1.1 to 1.3	-	19.6	35.7	1.0	58.1	1
			1.4 to 1.6	-	10.7	15.8	1.0	17.6	1
			1.65 to 1.95	-	7.8	10.7	1.0	11.7	1
			2.3 to 2.7	-	5.4	6.9	1.0	8.1	1
			3.0 to 3.6	-	4.3	5.2	1.0	6.1	1
C _{IN}	Input Capacitance		0 to 3.6		3	-	-	-	pF
C _O	Output Capacitance	V _O = GND	0		3	-	-	-	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz	0.9 to 3.6	-	4	-	-	_	pF

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

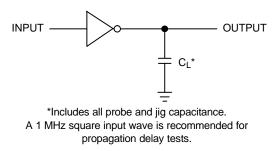
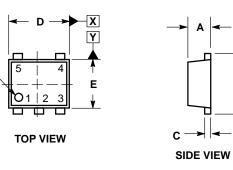
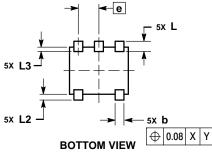


Figure 6. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
NL17SG14P5T5G	SOT–953 (Pb–Free)	8000 / Tape & Reel
NL17SG14DFT2G	SC–88A (Pb–Free)	3000 / Tape & Reel
NLV17SG14DFT2G*	SC–88A (Pb–Free)	3000 / Tape & Reel
NL17SG14AMUTCG (In Development)	UDFN6 1.45x1 mm (Pb-Free)	3000 / Tape & Reel
NL17SG14CMUTCG (In Development)	UDFN6 1x1 mm (Pb-Free)	3000 / Tape & Reel

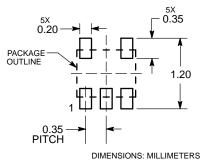

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

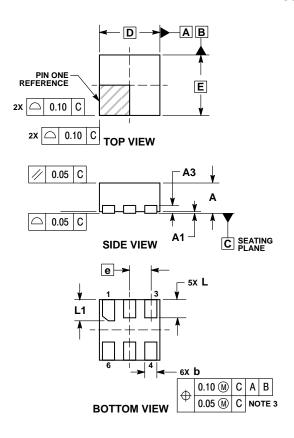
SOT-953 CASE 527AE ISSUE E

HE



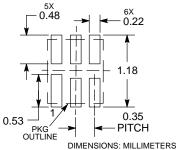
NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

FLASH, PROTRUSIONS, OR G							
	MILLIMETERS						
DIM	MIN NOM MA						
Α	0.34	0.37	0.40				
b	0.10	0.15	0.20				
С	0.07	0.12	0.17				
D	0.95	1.00	1.05				
Е	0.75	0.80	0.85				
е		0.35 BS	С				
HE	0.95	1.00	1.05				
L	0.175 REF						
L2	0.05	0.10	0.15				
L3			0.15				


SOLDERING FOOTPRINT*

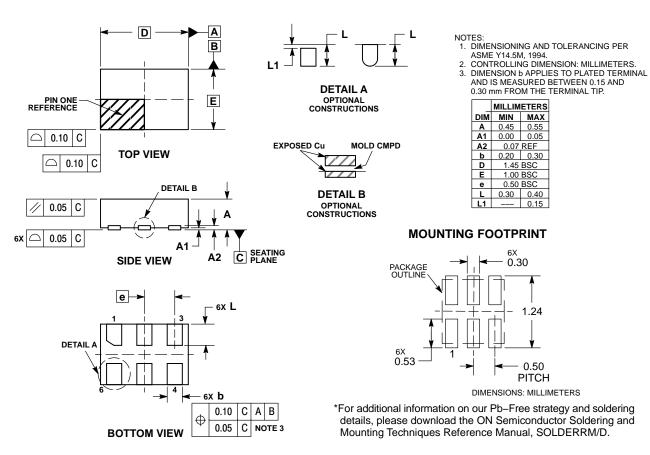
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

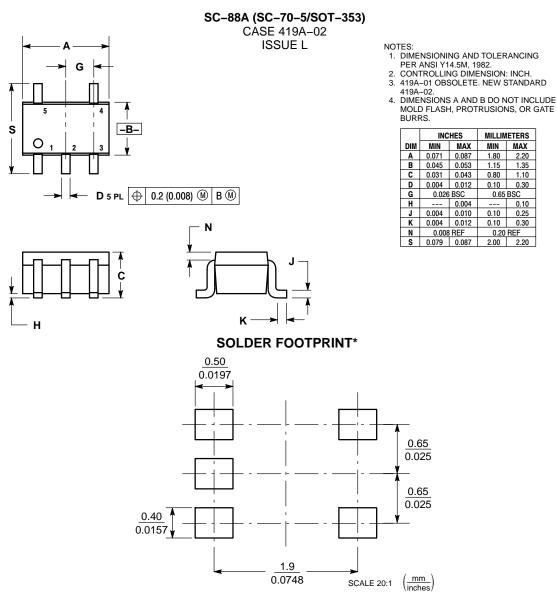
PACKAGE DIMENSIONS


UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

BURRS AND MOLD FLASH.					
	MILLIN	IETERS			
DIM	MIN	MIN MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.13	0.13 REF			
b	0.12	0.22			
D	1.00	BSC			
Е	1.00	BSC			
е	0.35	BSC			
L	0.25	0.35			
L1	0.30	0.40			


RECOMMENDED **SOLDERING FOOTPRINT***


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN6 1.45x1.0, 0.5P CASE 517AQ ISSUE O

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

MILLIMETERS

MIN MAX

0.10 0.30

0.10 0.25 0.10 0.30

0.20 REF

2.00 2.20

0.65 BSC

1.80

1.15

0.80

2.20 1.35

1.10

0.10

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative