

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Absolute Maximum Ratings(Note 7)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{l})	-0.5 V to +4.6 V
Output Voltage (V_{0})	
Outputs 3-Stated	-0.5 V to +4.6 V
Outputs Active (Note 8)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	-50 mA
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}}$	$+50 \mathrm{~mA}$
DC Output Source/Sink Current	
($\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$)	$\pm 50 \mathrm{~mA}$
DC V CC or Ground Current per	
Supply Pin (ICC or Ground)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 9)

Power Supply	
Operating	1.4 V to 3.6 V
Input Voltage	-0.3 V to 3.6 V
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	
Output in Active States	0 V to V_{CC}
Output in 3-STATE	0.0 V to 3.6 V
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 18 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 6 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	$\pm 2 \mathrm{~mA}$
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Free Air Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$10 \mathrm{~ns} / \mathrm{V}$
Note 7: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the Absolute Maximum Rat-
ings. The Recommended Operating Conditions tables will define the condi-
tions for actual device operation.
Note 8: I_{O} Absolute Maximum Rating must be observed.
Note 9: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	$\begin{gathered} 2.0 \\ 1.6 \\ 0.65 \times V_{\mathrm{CC}} \\ 0.65 \times \mathrm{V}_{\mathrm{CC}} \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35-\mathrm{V}_{\mathrm{CC}}$ $0.35-\mathrm{V}_{\mathrm{CC}}$	V
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{gathered}$		V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \\ 2.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.0 \\ 1.8 \\ 1.7 \\ \hline \end{gathered}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.65-2.3 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \end{gathered}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.4-1.6 \\ 1.4 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.05 \end{gathered}$		

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
		$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3		0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{l}^{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	
		$\mathrm{l}_{\mathrm{LL}}=6 \mathrm{~mA}$	1.65		0.3	
		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.4-1.6		0.2	
		$\mathrm{l}_{\mathrm{LL}}=2 \mathrm{~mA}$	1.4		0.35	
I_{1}	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3-STATE Output Leakage		1.4-3.6		± 10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$				
IofF	Power Off Leakage Current	$0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND	1.4-3.6		20.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 10)	1.4-3.6		± 20.0	
$\Delta \mathrm{l}_{\text {cc }}$	Increase in I ICC per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 10: Outputs disabled or 3-STATE only.

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
${ }_{\text {f MAX }}$	Maximum Clock Frequency	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	3.3 ± 0.3	250		MHz	
			2.5 ± 0.2	200			
			1.8 ± 0.15	100			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.5 ± 0.1	80.0			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	$\begin{array}{\|l} \hline \text { Propagation Delay } \\ \text { Bus-to-Bus } \end{array}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	2.9	ns	Figures 1 2
			2.5 ± 0.2	1.0	3.5		
			1.8 ± 0.15	1.5	7.0		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	14.0		$\begin{gathered} \text { Figures } 7, \\ 8 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { Clock-to-Bus } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures 1 2
			2.5 ± 0.2	1.0	4.4		
			1.8 ± 0.15	1.5	8.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	17.6		$\begin{gathered} \hline \text { Figures } 7, \\ 8 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Propagation Delay LE-to-Bus	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures 1,2
			2.5 ± 0.2	1.0	4.4		
			1.8 ± 0.15	1.5	8.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	17.6		Figures 7, 8
$\begin{aligned} & \overline{t_{\text {PZL }}} \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.8	ns	Figures 1, 3, 4
			2.5 ± 0.2	1.0	4.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{gathered} \text { Figures } 7, \\ 9,10 \end{gathered}$
$\begin{aligned} & \hline t_{\text {PLZ }} \\ & t_{\text {PHZ }} \end{aligned}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.7	ns	$\begin{gathered} \text { Figures } 1 \text {, } \\ 3,4 \end{gathered}$
			2.5 ± 0.2	1.0	4.2		
			1.8 ± 0.15	1.5	7.6		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	15.2		$\begin{gathered} \text { Figures } 7, \\ 9,10 \end{gathered}$
t_{s}	Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figure 6
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	2.5			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	3.0			
t_{H}	Hold Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.0		ns	Figure 6
			2.5 ± 0.2	1.0			
			1.8 ± 0.15	1.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	2.0			
${ }_{\text {tw }}$	Pulse Width	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figure 5
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	4.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	4.0			
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output Skew (Note 12)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		
Note 11: For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximately 300ps to the AC maximum specification. Note 12: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLH).							

Dynamic Switching Characteristics					
Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	
			2.5	0.6	v
			3.3	0.8	
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	
			2.5	-0.6	v
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	
			2.5	1.9	v
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & V_{1}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text {, or } 3.3 \mathrm{~V} \end{aligned}$	6.0	pF
$\mathrm{C}_{\text {IO }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	7.0	pF
$\overline{C_{P D}}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	20.0	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

FIGURE 1. AC Test Circuit

TEST	SWITCH
	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	Open
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{CZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $t_{\text {rec }}$ Waveforms

FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

$t_{\text {PLH }}, t_{\text {PHL }}$
$t_{\text {PZH }}, t_{\text {PHZ }}$
$t_{\text {PZL }}, t_{P L Z ~}$

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\text {PLZ }}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND
FIGURE 7. AC Test Circuit	

FIGURE 9. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 10. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

