NL3HS644

2:1 MIPI D-PHY (1.5 Gbps) 4-Data Lane Switch

The NL3HS644 is a 4-data lane MIPI, D-PHY switch. This single-pole double-throw (SPDT) switch is optimized for switching between 2 high-speed or low-power MIPI sources. The NL3HS644 is designed for MIPI specifications and allows connection to a CSI or DSI module.

Features

- Operating Supply: $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 4.5 V
- Switch Signal Range: 0 to V_{CC}
- Signal Types: MIPI, D-PHY
- ON-Resistance:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ON}}=8 \Omega \text { (Тур) HS MIPI } \\
& \mathrm{R}_{\mathrm{ON}}=7.9 \Omega \text { (Typ) LP MIPI }
\end{aligned}
$$

- ON-Resistance Mismatch:

$$
\begin{aligned}
& \Delta \mathrm{R}_{\mathrm{ON}}=0.09 \Omega \text { (Typ) HS MIPI } \\
& \Delta \mathrm{R}_{\mathrm{ON}}=0.17 \Omega \text { (Typ) LP MIPI }
\end{aligned}
$$

- ON Resistance Flatness:

$$
\begin{aligned}
& \mathrm{R}_{\text {ON_FLAT }}=0.03 \Omega \text { (Typ) HS MIPI } \\
& \mathrm{R}_{\text {ON_FLAT }}=0.46 \Omega \text { (Typ) LP MIPI }
\end{aligned}
$$

- Supply Current: $\mathrm{I}_{\mathrm{CC}}=55 \mu \mathrm{~A}$ (Max)
- Hi-Z Supply Current: $\mathrm{I}_{\mathrm{CCZ}}=5 \mu \mathrm{~A}$ (Max)
- Off-Isolation: $\mathrm{O}_{\mathrm{IRR}}=-27 \mathrm{~dB}(\mathrm{Typ})$
- Crosstalk: $\mathrm{X}_{\text {TALK }}=-28 \mathrm{~dB}$ (Typ)
- Bandwidth: BW $=1,050 \mathrm{MHz}$ (Typ)
- Channel to Channel Skew: $\mathrm{t}_{\mathrm{SK}}=63 \mathrm{ps}$ (Typ)
- ON Capacitance: CON $=12.6 \mathrm{pF}$
- 36-Ball WLCSP Package, $2.36 \mathrm{~mm} \times 2.36 \mathrm{~mm}$
- This device is $\mathrm{Pb}-$ Free, Halogen-Free/BFR-Free and are

RoHS-Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 8 of this data sheet.

Figure 1. Typical Application - Mobile Phone

FUNCTION TABLE

$\mathbf{O E}$	SEL	FUNCTION
L	L	CLKP $=$ CLKAP, CLKN $=$ CLKAN, DnP $=\mathrm{DAnP}, D n N=\operatorname{DAnN}$
L	H	CLKP $=$ CLKBP, CLKN $=$ CLKBN, DnP $=\mathrm{DBnP}, D n N=D B n N$
H	X	CLKAP/CLKAN, CLKBP/CLKBN, DAnP/DAnN, DBnP/DBnN Ports at High Impedance

Figure 2. Block Diagram

Figure 3. Pinout (Top Through View)

PIN ASSIGNMENT

Pin Name	Ball	Description
CLKP / CLKN	A2 / A1	Common Clock Path
D1P / D1N	B2 / B1	Common Data Path 1
D2P / D2N	C2 / C1	Common Data Path 2
D3P / D3N	D2 / D1	Common Data Path 3
D4P / D4N	E2 / E1	Common Data Path 4
CLKAP / CLKAN	A3 / B3	A-Side Clock Path
DA1P / DA1N	A4 / B4	A-Side Data Path 1
DA2P / DA2N	A5 / A6	A-Side Data Path 2
DA3P / DA3N	B5 / B6	A-Side Data Path 3
DA4P / DA4N	C5 / C6	A-Side Data Path 4
CLKBP / CLKBN	D6 / D5	B-Side Clock Path
DB1P / DB1N	E6 / E5	B-Side Data Path 1
DB2P / DB2N	F6 / F5	B-Side Data Path 2
DB3P / DB3N	E4 / F4	B-Side Data Path 3
DB4P / DB4N	E3 / F3	B-Side Data Path 4
SEL	F2	Control Pin
	SEL = L:	CLKP = CLKAP, CLKN = CLKAN, DnP = DAnP, DnN = DAnN
OE	F1	Output Enable
VCC	C4	Power
GND	D3	Ground
NC	C3 / D4	No Connect

NL3HS644

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Control Input Voltage (SEL or OE)	-0.5 to +5.5	V
I_{OS}	Switch Output Current	50	mA
$\mathrm{I}_{\mathrm{IOK}}$	Switch Input/Output Diode Current	-50	mA
I_{IK}	Control Input Diode Current	± 50	mA
$\mathrm{~T}_{\mathrm{S}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	4.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Switch Input / Output Voltage			V
		HS Mode	0.1	0.3
		LP Mode	0	1.2
$\mathrm{~V}_{\mathrm{IN}}$	Digital Control Input Voltage (SEL or OE) (Note 1)	GND	V_{CC}	V

1. Control input must be held High or Low. It must not float

DC ELECTRICAL CHARACTERISTICS
Voltages referenced to GND. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

DIGITAL CONTROL SECTION (SEL or OE)

V_{IK}	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	2.8			-1.2	V
$\mathrm{~V}_{\mathrm{IH}}$	Input Voltage High		$1.65-4.5$	1.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input Voltage Low		$1.65-4.5$			0.4	V
I_{IN}	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	$1.65-4.5$			± 100	nA

SWITCHES

$\underset{\text { HS }}{\mathrm{R}_{\mathrm{ON} \text { _MIPI_ }}}$	Switch ON Resistance for HS MIPI Applications (Note 2)	$\mathrm{I} \mathrm{ON}=-10 \mathrm{~mA}, \overline{\mathrm{OE}}=$	1.8	9	12	Ω
		$0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}}$ or 0 V ,	2.5	8	9	
		CLKA, CLKB, DBn or	3.6	8	9	
		DAn $=0.1,0.2,0.3 \mathrm{~V}$	4.5	8	9	
RON_MIPI_LP	Switch ON Resistance for LP MIPI Applications (Note 2)	$\mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, \overline{\mathrm{OE}=}$ $0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}}$ or 0 V , CLKA, CLKB, DBn or $\mathrm{DAn}=0,0.6,1.2 \mathrm{~V}$	1.8	9.5	12	Ω
			2.5	8.5	10	
			3.6	7.9	9	
			4.5	7.6	9	
$\Delta \mathrm{R}_{\mathrm{ON}}$ MIPI_HS	ON Resistance Matching Between HS MIPI Channels (Note 3)	$\begin{aligned} & \mathrm{I} \mathrm{ON}=-10 \mathrm{~mA}, \overline{\mathrm{OE}}= \\ & 0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \mathrm{CC} \text { or } 0 \mathrm{~V} \text {, } \\ & \mathrm{CLKA}, \mathrm{CLKB}, \mathrm{DBn} \text { or } \\ & \mathrm{DAn}=0.1,0.2,0.3 \mathrm{~V} \end{aligned}$	1.8	0.02		Ω
			2.5	0.09		
			3.6	0.09		
			4.5	0.08		

2. Measured by the voltage drop between A and B pins at the indicated current through the switch. ON resistance is determined by the lower of the voltage on the two (A or B ports).
3. Guaranteed by characterization.

DC ELECTRICAL CHARACTERISTICS

Voltages referenced to GND. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
Symbol				Min	Typ	Max	

SWITCHES

$\Delta \mathrm{R}_{\mathrm{ON}}$ MIPI_LP	ON Resistance Matching Between LP MIPI Channels (Note 3)	$\mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, \overline{\mathrm{OE}}=$ $0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}}$ or 0 V , CLKA, CLKB, DBn or $\mathrm{DAn}=0,0.6,1.2 \mathrm{~V}$	1.8	0.17		Ω
			2.5	0.12		
			3.6	0.17		
			4.5	0.09		
RON_FLAT_ MIPI_HS	ON Resistance Flatness for HS MIPI Channels (Note 3)	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, \mathrm{OE}= \\ & 0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \end{aligned}$ CLKA, CLKB, DBn or $\text { DAn = 0.1, 0.2, } 0.3 \mathrm{~V}$	1.8	0.23		Ω
			2.5	0.11		
			3.6	0.03		
			4.5	0.02		
Ron_flat_ MIPI_LP	ON Resistance Flatness for LP MIPI Channels (Note 3)	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, \overline{\mathrm{OE}=} \\ & 0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \end{aligned}$ CLKA, CLKB, DBn or $\text { DAn }=0,0.6,1.2 \mathrm{~V}$	1.8	2.09		Ω
			2.5	1.19		
			3.6	0.46		
			4.5	0.08		
${ }^{\prime}{ }^{\prime} \mathrm{O}$ (OFF), $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	OFF Leakage Current (CLKAn, DAn, CLKBn, DBn)	CLKn, Dn $=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V}$, CLKAn, DAn, or CLKBn; DBn = $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, 0.3 \mathrm{~V}$ or Floating; $\mathrm{OE}=0 \mathrm{~V}$	1.65-4.5		± 100	nA
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	ON Leakage Current of Common Ports (CLKn, Dn)	CLKn, Dn $=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-0.3 \mathrm{~V}$, CLKAn, DAn, or CLKBn; DBn = $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, 0.3 \mathrm{~V}$ or Floating; $\overline{O E}=0 \mathrm{~V}$	1.65-4.5		± 100	nA
V_{IK}	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.8		-1.2	V
loz	Off-State Leakage Current	$0 \leq$ CLKn, Dn, CLKAn, CLKBn, $\mathrm{DAn}, \mathrm{DBn} \leq 3.6 \mathrm{~V} ; \mathrm{OE}=\mathrm{High}$	4.5		± 100	nA

SUPPLY CURRENTS

$\mathrm{I}_{\mathrm{CCZ}}$	Quiescent Hi-Z Supply Current	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{\text {CC }}$, $\mathrm{l}_{\text {OUT }}=0$	4.5		0.5	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC }}$, $\mathrm{l}_{\text {OUT }}=0$	2.5 to 4.5		55	$\mu \mathrm{A}$
			1.8		30	
$\mathrm{I}_{\text {CCT }}$	Increase in ICC Current per Control Voltage and V_{CC}	$\mathrm{V}_{\text {SEL }}, \mathrm{V}(\mathrm{OE})=1.65 \mathrm{~V}$	4.5		4.0	$\mu \mathrm{A}$
			2.5	0.1	1.0	

2. Measured by the voltage drop between A and B pins at the indicated current through the switch. ON resistance is determined by the lower of the voltage on the two (A or B ports).
3. Guaranteed by characterization.

NL3HS644

AC ELECTRICAL CHARACTERISTICS All typical values are for $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
${ }_{\text {t }}^{\text {INIT }}$		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{IS}}=1.2 \mathrm{~V}$	2.5 to 4.5	100			us
	$V_{\text {CC }}$ to Output (Notes 4, 5)	Figure 4	1.8	150			
$t_{\text {EN }}$	Enable Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{IS}}=1.2 \mathrm{~V}$	2.5 to 4.5		120	200	us
	OE to Output	Figure 5	1.8		250	500	
$\mathrm{t}_{\text {DIS }}$	Disable Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{IS}}=1.2 \mathrm{~V}$	2.5 to 4.5		25	50	ns
	$\overline{\text { OE to Output }}$	Figure 5	1.8		50	90	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{IS}}=1.2 \mathrm{~V}$	2.5 to 4.5		50	100	ns
	SEL to Output	Figure 5	1.8		75	125	
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\text {IS }}=1.2 \mathrm{~V}$	2.5 to 4.5		50	200	ns
	SEL to Output	Figure 5	1.8		200	325	
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{IS}}=1.2 \mathrm{~V}$ Figure 6		10	50		ns
OIRR	Off-Isolation for MIPI (Note 4)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{f}=750 \mathrm{MHz}, \overline{\mathrm{OE}}_{=}= \\ & \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IS}}=-1 \mathrm{dBm}(200 \mathrm{mV} \mathrm{PP}) \end{aligned}$	1.65 to 4.5		-27		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk for MIPI (Note 4)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{f}=750 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{IS}}=-1 \mathrm{dBm}(200 \mathrm{mV} \mathrm{PP}) \end{aligned}$	1.65 to 4.5		-28		dB
BW	-3 dB Bandwidth (Note 4)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	3.0	900	1050		MHz
$\mathrm{S}_{\mathrm{DD} 21}$	Differential Data Rate	Inter-Operability Data Rate	3.0		1.5		Gbps

4. Guaranteed by characterization.
5. Wait time required after V_{CC} power-up to operating level before data access is valid.

HIGH SPEED-RELATED AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
${ }_{\text {tsk(0) }}$	Channel-to-Channel Single-Ended Skew (Note 6)	TDR-Based Method $\left(\mathrm{V}_{\mathrm{IS}}=0.2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{ON}}\right)$ Figure 7	3.3		63	67	ps
$\mathrm{t}_{\mathrm{SK}(\mathrm{P})}$	Skew of Opposite Transitions of the Same Output (Note 6)	TDR-Based Method $\left(\mathrm{V}_{\mathrm{IS}}=0.2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{ON}}\right)$ Figure 8	3.3		17	31	ps

6. Guaranteed by characterization.

CAPACITANCE

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	3.3		14.9		pF
$\mathrm{Con}^{\text {a }}$	Out ON Capacitance	$\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{O E}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	3.3		12.6		pF
CofF	Out OFF Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{OE}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	3.3		7.4		pF

NL3HS644

Timing Diagrams

Figure 4. $\mathrm{t}_{\mathrm{INIT}}$, Initialization Time

Figure 5. $\mathrm{t}_{\mathrm{EN}}, \mathrm{t}_{\mathrm{DIS}}, \mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$ Times

Figure 7. $\mathbf{t s K}_{\mathbf{S K}(0)}$, Channel-to-Channel Single-Ended

Figure 6. t_{BB}, Break-Before-Make Time

Figure 8. $\mathbf{t S K}_{\mathbf{S K}(\mathrm{P})}$, Same Channel Opposite Transitions

NL3HS644
Eye Diagrams

Figure 9. D-PHY HS 1.5 Gbps with Eye Mask

Figure 10. D-PHY LP 80 Mbps with Eye Mask

DEVICE ORDERING INFORMATION

Device Order Number	Device Code	Package Type	Tape \& Reel Size ${ }^{\dagger}$
NL3HS644FCTAG	$3 H S 644$	36-ball WLCSP (Pb-Free)	$3000 /$ Tape \& Reel
NL3HS644BFCTAG (Backside Coated)	HS644B	36-ball WLCSP (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WLCSP36 2.34x2.34

CASE 567LR

TOP VIEW

ISSUE B
NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. COPLANARITY APPLIES TO SPHERICAL

DETAIL A optional CONSTRUCTION

CROWNS OF SOLDER BALLS.
CROWNS OF SOLDER BAL

	MILLIMETERS	
DIM	MIN	MAX
A	---	0.54
A1	0.17	0.23
A2	0.00	0.027
\mathbf{b}	0.24	0.30
\mathbf{D}	2.34 BSC	
E	2.34 BSC	
\mathbf{e}	0.40 BSC	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

