

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

www.fairchildsemi.com

DC Electrical Characteristics (Continued)

Symbol	Parameter		Conditions	V_{EE}	V_{cc}	$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units	
			Typ			Guaranteed Limits					
$I_{I Z}$	Maximum Switch "OFF" Leakage Current (Common Pin)	HC4051		$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \mathrm{GND} \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 4.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 4.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
		HC4052	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
		HC4053	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case $\mathrm{V}_{I H}$ and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current occur for CMOS at the higher voltage and so the 5.5 V values should be used.
Note 5: At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.
AC Electrical Characteristics
$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	Conditions		V_{EE}	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units	
				Typ		Guaranteed Limits					
$\overline{t_{\text {PHL }},} \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Switch In to Out				$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 25 \\ 5 \\ 4 \\ 3 \end{gathered}$	$\begin{gathered} 60 \\ 12 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 75 \\ & 15 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 90 \\ & 18 \\ & 14 \\ & 13 \end{aligned}$	ns ns ns ns
$\overline{t_{\text {PZL }}, \mathrm{t}_{\text {PZH }}}$	Maximum Switch Turn "ON" Delay	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		$\begin{gathered} \hline \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 92 \\ & 16 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 355 \\ 69 \\ 46 \\ 41 \end{gathered}$	$\begin{gathered} \hline 435 \\ 87 \\ 58 \\ 51 \end{gathered}$	$\begin{gathered} 515 \\ 103 \\ 69 \\ 62 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Maximum Switch Turn "OFF" Delay			$\begin{gathered} \hline \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 65 \\ & 28 \\ & 18 \\ & 16 \end{aligned}$	$\begin{gathered} 290 \\ 58 \\ 37 \\ 32 \end{gathered}$	$\begin{gathered} 365 \\ 73 \\ 46 \\ 41 \end{gathered}$	$\begin{gathered} 435 \\ 87 \\ 56 \\ 48 \end{gathered}$	ns ns ns ns	
$\mathrm{f}_{\text {MAX }}$	Minimum Switch Frequency Response $20 \log \left(V_{1} / V_{0}\right)=3 d B$			$\begin{gathered} \text { GND } \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$				MHz MHz	
	Control to Switch Feedthrough Noise	$\begin{aligned} & R_{L}=600 \Omega, \\ & f=1 \mathrm{MHz}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	$\begin{gathered} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1080 \\ 250 \end{gathered}$				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
	Crosstalk between any Two Switches	$\begin{aligned} & R_{L}=600 \Omega, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	$\begin{gathered} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -52 \\ & -50 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
	Switch OFF Signal Feedthrough Isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0 V -4.5 V	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -42 \\ & -44 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
THD	Sinewave Harmonic Distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	$\begin{gathered} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.013 \\ & 0.008 \end{aligned}$				$\begin{aligned} & \text { \% } \\ & \% \end{aligned}$	
C_{IN}	Maximum Control Input Capacitance					5	10	10	10	pF	
$\overline{\mathrm{C}_{\mathrm{IN}}}$	Maximum Switch Input Capacitance	Input 4051 Comm 4052 Comm 4053 Comm				$\begin{aligned} & 15 \\ & 90 \\ & 45 \\ & 30 \end{aligned}$				pF	
C_{IN}	Maximum Feedthrough Capacitance					5				pF	

AC Test Circuits and Switching Time Waveforms

FIGURE 2. "OFF" Channel Leakage Current

FIGURE 3. "ON" Channel Leakage Current

FIGURE 4. $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ Propagation Delay Time Signal Input to Signal Output

FIGURE 5. $\mathrm{t}_{\text {PZL, }}$, $\mathrm{t}_{\text {PLZ }}$ Propagation Delay Time Control to Signal Output

FIGURE 6. $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ Propagation Delay Time Control to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

$v_{15(1)}$

Typical Performance Characteristics

$$
\mathrm{V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{EE}}
$$

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To
avoid drawing V_{CC} current when switch current flows into the analog switch pins, the voltage drop across the switch must not exceed 1.2 V (calculated from the ON resistance).

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

