## MC74HC4316A

## Quad Analog Switch/ Multiplexer/Demultiplexer with Separate Analog and Digital Power Supplies

## High-Performance Silicon-Gate CMOS

The MC74HC4316A utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/multiplexer/ demultiplexer controls analog and digital voltages that may vary across the full analog power-supply range (from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ ).

The HC4316A is similar in function to the metal-gate CMOS MC14016 and MC14066, and to the High-Speed CMOS HC4066A. Each device has four independent switches. The device control and Enable inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The device has been designed so that the ON resistances $\left(\mathrm{R}_{\mathrm{ON}}\right)$ are much more linear over input voltage than $\mathrm{R}_{\mathrm{ON}}$ of metal-gate CMOS analog switches. Logic-level translators are provided so that the On/Off Control and Enable logic-level voltages need only be $\mathrm{V}_{\mathrm{CC}}$ and GND, while the switch is passing signals ranging between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$. When the Enable pin (active-low) is high, all four analog switches are turned off.

## Features

- Logic-Level Translator for On/Off Control and Enable Inputs
- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Diode Protection on All Inputs/Outputs
- Analog Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=2.0$ to 12.0 V
- Digital (Control) Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0 \mathrm{~V}$ to 6.0 V , Independent of $\mathrm{V}_{\mathrm{EE}}$
- Improved Linearity of ON Resistance
- Chip Complexity: 66 FETs or 16.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant


MARKING DIAGRAM


| A | $=$ Assembly Location |
| :--- | :--- |
| WL, L | $=$ Wafer Lot |
| YY, Y | $=$ Year |
| WW, W | $=$ Work Week |
| G | $=$ Pb-Free Package |

## ORDERING INFORMATION

| Device | Package | Shipping ${ }^{\dagger}$ |
| :---: | :---: | :---: |
| MC74HC4316ADR2G | SOIC-16 <br> (Pb-Free) | $2500 /$ <br> Tape\&Reel |
| NLV74HC4316ADR2G ${ }^{*}$ | SOIC-16 <br> (Pb-Free) | $2500 /$ <br> Tape\&Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## MC74HC4316A

FUNCTION TABLE

| Inputs |  | State of Analog <br> Switch |
| :---: | :---: | :---: |
| Enable | On/Off Control |  |
| L | H | Off |
| L | L | Off |
| H | X |  |

X = Don't Care.


Figure 1. Logic Diagram


Figure 2. On Resistance Test Set-Up

MAXIMUM RATINGS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage | (Ref. to GND ) <br> (Ref. to $\left.\mathrm{V}_{\mathrm{EE}}\right)$ | -0.5 to +7.0 <br> -0.5 to +14.0 |
| $\mathrm{~V}_{\mathrm{EE}}$ | Negative DC Supply Voltage (Ref. to GND) | -7.0 to +0.5 | V |
| $\mathrm{~V}_{\text {IS }}$ | Analog Input Voltage | $\mathrm{V}_{\mathrm{EE}}-0.5$ <br> to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{~V}_{\text {in }}$ | DC Input Voltage (Ref. to GND) | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| I | DC Current Into or Out of Any Pin | $\pm 25$ | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation in Still Air $\quad$ SOIC Package* | 500 | mW |
| $\mathrm{~T}_{\text {stg }}$ | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature, 1 mm from Case for 10 Seconds) | 260 | ${ }^{\circ} \mathrm{C}$ |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $\mathrm{V}_{\mathrm{CC}}$ ). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ}$ to $125^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter |  | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage (Ref. to GND) |  | 2.0 | 6.0 | V |
| $\mathrm{V}_{\text {EE }}$ | Negative DC Supply Voltage (Ref. to GND) |  | -6.0 | GND | V |
| $\mathrm{V}_{\text {IS }}$ | Analog Input Voltage |  | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\text {CC }}$ | V |
| $\mathrm{V}_{\text {in }}$ | Digital Input Voltage (Ref. to GND) |  | GND | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{10}{ }^{*}$ | Static or Dynamic Voltage Across Switch |  | - | 1.2 | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature, All Package Types |  | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$ | Input Rise and Fall Time (Control or Enable Inputs) (Figure 10) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} \hline 1000 \\ 600 \\ 500 \\ 400 \end{gathered}$ | ns |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
*For voltage drops across the switch greater than 1.2 V (switch on), excessive $\mathrm{V}_{\mathrm{cc}}$ current may be drawn; i.e., the current out of the switch may contain both $\mathrm{V}_{\mathrm{CC}}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE $=$ GND Except Where Noted

| Symbol | Parameter | Test Conditions | $\underset{\mathrm{VC}}{\mathrm{v}_{\mathrm{cc}}}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High-Level Voltage, Control or Enable Inputs | $\mathrm{R}_{\text {on }}=$ Per Spec | $\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$ | $\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$ | $\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$ | V |
| $\mathrm{V}_{\text {IL }}$ | Maximum Low-Level Voltage, Control or Enable Inputs | $\mathrm{R}_{\text {on }}=$ Per Spec | $\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$ | $\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$ | $\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$ | V |
| $\mathrm{l}_{\text {in }}$ | Maximum Input Leakage Current, Control or Enable Inputs | $\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{~V} \end{aligned}$ | 6.0 | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Maximum Quiescent Supply Current (per Package) | $\begin{array}{\|ll} \hline V_{\text {in }}=V_{C C} \text { or GND } & \\ V_{I O}=0 V & V_{E E}=G N D \\ & V_{E E}=-6.0 \end{array}$ | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 2 \\ & 4 \end{aligned}$ | $\begin{aligned} & 20 \\ & 40 \end{aligned}$ | $\begin{gathered} 40 \\ 160 \end{gathered}$ | $\mu \mathrm{A}$ |

DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to $\mathrm{V}_{\mathrm{EE}}$ )

| Symbol | Parameter | Test Conditions | $\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$ | $\begin{gathered} \mathrm{v}_{\mathrm{EE}} \\ \mathrm{~V} \end{gathered}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\mathrm{R}_{\text {on }}$ | Maximum "ON" Resistance | $\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \text { (Figure 2) } \end{aligned}$ | $\begin{gathered} \hline 2.0^{*} \\ 45 \\ 4.5 \\ 6.0 \end{gathered}$ | $\begin{gathered} \hline 0.0 \\ 0.0 \\ -4.5 \\ -6.0 \end{gathered}$ | $\begin{gathered} -\overline{6} \\ 160 \\ 90 \\ 90 \end{gathered}$ | $\begin{aligned} & - \\ & 200 \\ & 110 \\ & 110 \end{aligned}$ | $\begin{aligned} & - \\ & 240 \\ & 130 \\ & 130 \end{aligned}$ | $\Omega$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \text { (Endpoints) } \\ & \mathrm{IS}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \text { (Figure 2) } \end{aligned}$ | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} \hline 0.0 \\ 0.0 \\ -4.5 \\ -6.0 \end{gathered}$ | $\begin{aligned} & - \\ & 90 \\ & 70 \\ & 70 \end{aligned}$ | $\begin{aligned} & 115 \\ & 90 \\ & 90 \end{aligned}$ | $\begin{aligned} & 140 \\ & 105 \\ & 105 \end{aligned}$ |  |
| $\Delta \mathrm{R}_{\text {on }}$ | Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package | $\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} \hline 0.0 \\ 0.0 \\ -4.5 \\ -6.0 \end{gathered}$ | $\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & - \\ & 25 \\ & 20 \\ & 20 \end{aligned}$ | $\begin{aligned} & 30 \\ & 25 \\ & 25 \end{aligned}$ | $\Omega$ |
| 1 off | Maximum Off-Channel Leakage Current, Any One Channel | $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{10}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ <br> Switch Off (Figure 3) | 6.0 | -6.0 | 0.1 | 0.5 | 1.0 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {on }}$ | Maximum On-Channel Leakage Current, Any One Channel | $\begin{array}{\|l} \hline V_{\text {in }}=V_{I H} \\ V_{I S}=V_{C C} \text { or } V_{E E} \\ \text { (Figure 4) } \end{array}$ | 6.0 | -6.0 | 0.1 | 0.5 | 1.0 | $\mu \mathrm{A}$ |

*At supply voltage ( $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ ) approaching 2.0 V the analog switch-on resistance becomes extremely non-linear. Therefore, for low-voltage operation, it is recommended that these devices only be used to control digital signals.

AC ELECTRICAL CHARACTERISTICS ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Control or Enable $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}\right)$

| Symbol | Parameter | $\underset{\mathrm{Vc}}{\mathrm{v}_{\mathrm{cc}}}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHL }} \end{aligned}$ | Maximum Propagation Delay, Analog Input to Analog Output (Figures 8 and 9) | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 40 \\ 6 \\ 5 \end{gathered}$ | $\begin{gathered} \hline 50 \\ 8 \\ 7 \end{gathered}$ | $\begin{gathered} \hline 60 \\ 9 \\ 8 \end{gathered}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$ | Maximum Propagation Delay, Control or Enable to Analog Output (Figures 10 and 11) | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 130 \\ 40 \\ 30 \end{gathered}$ | $\begin{gathered} \hline 160 \\ 50 \\ 40 \end{gathered}$ | $\begin{gathered} 200 \\ 60 \\ 50 \end{gathered}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLL}}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$ | Maximum Propagation Delay, Control or Enable to Analog Output (Figures 10 and 11) | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 140 \\ 40 \\ 30 \end{gathered}$ | $\begin{aligned} & 175 \\ & 50 \\ & 40 \end{aligned}$ | $\begin{gathered} 250 \\ 60 \\ 50 \end{gathered}$ | ns |
| C | Maximum Capacitance ON/OFF Control <br> and Enable Inputs  <br> Control Input $=$ GND  <br> Analog I/O  <br> Feedthrough  | - | $\begin{aligned} & \hline 10 \\ & \hline \\ & \hline 35 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & \hline 10 \\ & \hline \\ & \hline 35 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & \hline 10 \\ & \hline \\ & \hline 35 \\ & 1.0 \end{aligned}$ | pF |


| $\mathrm{C}_{\mathrm{pD}}$ |  | Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | pF |
| :---: | :---: | :---: | :---: |
|  | Power Dissipation Capacitance (Per Switch) (Figure 13)* | 15 |  |

[^0]ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

| Symbol | Parameter | Test Conditions | $\mathrm{v}_{\mathrm{cc}}$ | $\begin{gathered} \mathrm{v}_{\mathrm{EE}} \\ \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Limit }^{\star} \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BW | Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 5) | $\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave <br> Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain 0 dBm at $\mathrm{V}_{\mathrm{OS}}$ Increase $f_{\text {in }}$ Frequency Until dB Meter <br> Reads -3 dB $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ | $\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.00 \end{aligned}$ | $\begin{aligned} & \hline-2.25 \\ & -4.50 \\ & -6.00 \end{aligned}$ | $\begin{aligned} & 150 \\ & 160 \\ & 160 \end{aligned}$ | MHz |
| - | Off-Channel Feedthrough Isolation <br> (Figure 6) | $\begin{array}{\|l} \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ \text { Adjust } \mathrm{f}_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ \qquad \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{array}$ | 2.25 4.50 6.00 2.25 4.50 6.00 | -2.25 -4.50 -6.00 -2.25 -4.50 -6.00 | $\begin{aligned} & \hline-50 \\ & -50 \\ & -50 \\ & \hline-40 \\ & -40 \\ & -40 \end{aligned}$ | dB |
| - | Feedthrough Noise, Control to Switch <br> (Figure 7) | $\begin{aligned} & V_{\text {in }} \leq 1 \mathrm{MHz} \text { Square Wave }\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right) \\ & \text { Adjust } R_{L} \text { at Setup so that } \mathrm{I}_{\mathrm{S}}=0 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, C_{\mathrm{L}}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$ | 2.25 4.50 6.00 2.25 4.50 6.00 | -2.25 -4.50 -6.00 -2.25 -4.50 -6.00 | 30 65 100 60 130 200 | mV PP |
| - | Crosstalk Between Any Two Switches <br> (Figure 12) | $\begin{aligned} & \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ & \text { Adjust } \mathrm{f}_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\text {IS }} \\ & \qquad \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$ | 2.25 4.50 6.00 2.25 4.50 6.00 | -2.25 <br> -4.50 <br> -6.00 <br> -2.25 <br> -4.50 <br> -6.00 | $\begin{aligned} & \hline-70 \\ & -70 \\ & -70 \\ & \hline-80 \\ & -80 \\ & -80 \end{aligned}$ | dB |
| THD | Total Harmonic Distortion (Figure 14) |  | $\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.00 \\ & \hline \end{aligned}$ | $\begin{array}{r} -2.25 \\ -4.50 \\ -6.00 \\ \hline \end{array}$ | $\begin{aligned} & 0.10 \\ & 0.06 \\ & 0.04 \\ & \hline \end{aligned}$ | \% |

*Limits not tested. Determined by design and verified by qualification.


Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

*Includes all probe and jig capacitance.
Figure 5. Maximum On-Channel Bandwidth Test Set-Up

*Includes all probe and jig capacitance.
Figure 7. Feedthrough Noise, Control to Analog Out, Test Set-Up


Figure 4. Maximum On Channel Leakage Current, Test Set-Up

*Includes all probe and jig capacitance.
Figure 6. Off-Channel Feedthrough Isolation, Test Set-Up


Figure 8. Propagation Delays, Analog In to Analog Out

*Includes all probe and jig capacitance.
Figure 9. Propagation Delay Test Set-Up

*Includes all probe and jig capacitance.
Figure 11. Propagation Delay Test Set-Up


Figure 13. Power Dissipation Capacitance Test Set-Up


Figure 10. Propagation Delay, ON/OFF Control to Analog Out

*Includes all probe and jig capacitance.
Figure 12. Crosstalk Between Any Two Switches, Test Set-Up (Adjacent Channels Used)

*Includes all probe and jig capacitance.
Figure 14. Total Harmonic Distortion, Test Set-Up

APPLICATIONS INFORMATION


Figure 15. Plot, Harmonic Distortion

The Enable and Control pins should be at $\mathrm{V}_{\mathrm{CC}}$ or GND logic levels, $\mathrm{V}_{\mathrm{CC}}$ being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$ through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$. The positive peak analog voltage should not exceed $\mathrm{V}_{\mathrm{CC}}$. Similarly, the negative peak analog voltage should not go below $\mathrm{V}_{\mathrm{EE}}$. In the example below, the difference between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ is 12 V .


Figure 16.

Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak-to-peak can be controlled.

When voltage transients above $\mathrm{V}_{\mathrm{CC}}$ and/or below $\mathrm{V}_{\mathrm{EE}}$ are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn-on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MOSORBs (MOSORB ${ }^{\circledR}$ is an acronym for high current surge protectors). MOSORBs are fast turn-on devices ideally suited for precise dc protection with no inherent wear out mechanism.


Figure 17. Transient Suppressor Application

## MC74HC4316A


a. Using Pull-Up Resistors

b. Using HCT Buffer

Figure 18. LSTTL/NMOS to HCMOS Interface


Figure 19. Switching a 0-to-12 V Signal Using a Single Power Supply (GND $\neq 0 \mathrm{~V}$ )


Figure 20. 4-Input Multiplexer


Figure 21. Sample/Hold Amplifier

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1


| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com


[^0]:    *Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}^{2 f}+I_{C C} V_{C C}$.

