MC14551B

Quad 2-Channel Analog Multiplexer/Demultiplexer

The MC14551B is a digitally-controlled analog switch. This device implements a 4PDT solid state switch with low ON impedance and very low OFF Leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

Features

- Triple Diode Protection on All Control Inputs
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Analog Voltage Range $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)=3.0$ to 18 V

Note: V_{EE} must be $\leq \mathrm{V}_{\mathrm{SS}}$

- Linearized Transfer Characteristics
- Low Noise - $12 \mathrm{nV} \sqrt{\text { Cycle }}, \mathrm{f} \geq 1.0 \mathrm{kHz}$ typical
- For Low R ${ }_{\text {ON }}$, Use The HC4051, HC4052, or HC4053 High-Speed CMOS Devices
- Switch Function is Break Before Make
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage Range (Referenced to $\left.\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{SS}} \geq \mathrm{V}_{\mathrm{EE}}\right)$	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage (DC or Transient) (Referenced to $\mathrm{V}_{\text {SS }}$ for Control Input and $\mathrm{V}_{\text {EE }}$ for Switch I/O)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input Current (DC or Transient), per Control Pin	$\mathrm{I}_{\text {in }}$	± 10	mA
Switch Through Current	I_{Sw}	± 25	mA
Power Dissipation, per Package (Note 1)	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{Stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating: Plastic " P and $D / D W$ "

Packages: - $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$ for control inputs and $\mathrm{V}_{\mathrm{EE}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)$ $\leq V_{\text {DD }}$ for Switch I/O.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{EE}}$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$. Unused outputs must be left open.

ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC14551B

PIN ASSIGNMENT

W1 1 -	16	V_{DD}
X0 [2	15	Wwo
X1 [3	14	W
X[4	13	Z
Y ¢ 5	12	Z1
Y0 6	11	ZO
$\mathrm{V}_{\text {EE }}[7$	10	Y1
$\mathrm{v}_{\text {SS }}[8$	9	CONTROL

$$
\begin{aligned}
& V_{\mathrm{DD}}=\operatorname{Pin} 16 \\
& V_{\mathrm{SS}}=\operatorname{Pin} 8 \\
& V_{\mathrm{EE}}=\operatorname{Pin} 7
\end{aligned}
$$

Control	ON
0	$\mathrm{~W} 0 \mathrm{X} 0 \mathrm{Y} 0 \mathrm{Z0}$
1	$\mathrm{~W} 1 \mathrm{X} 1 \mathrm{Y} 1 \mathrm{Z1}$

NOTE: Control Input referenced to V_{SS}, Analog Inputs and Outputs reference to V_{EE}. V_{EE} must be $\leq \mathrm{V}_{\mathrm{SS}}$.

ORDERING INFORMATION

Device	Package	Shipping †
MC14551BCPG	PDIP-16 (Pb-Free)	25 Units / Rail
MC14551BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14551BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14551BDR2G*		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS

Characteristic	V_{DD}	Test Conditions	Symbol	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Typ (Note 2)	Max	Min	Max	
SUPPLY REQUIREMENTS (Voltages Referenced to $\mathrm{V}_{\text {EE }}$)											
Power Supply Voltage Range	-	$\mathrm{V}_{\mathrm{DD}}-3.0 \geq \mathrm{V}_{\mathrm{SS}} \geq \mathrm{V}_{\mathrm{EE}}$	V_{DD}	3.0	18	3.0	-	18	3.0	18	V
Quiescent Current Per Package	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	Control Inputs: $\mathrm{V}_{\text {in }}=$ V_{SS} or V_{DD}, Switch I/O: $\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{I} / \mathrm{O}}$ $\leq \mathrm{V}_{\mathrm{DD}}$, and $\Delta \mathrm{V}_{\text {switch }} \leq$ 500 mV (Note 3)	IDD	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
Total Supply Current (Dynamic Plus Quiescent, Per Package)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ only (The channel component, ($\left.V_{\text {in }}-V_{\text {out }}\right) / R_{\text {on }}$, is not included.)	$\mathrm{I}_{\mathrm{D}(\mathrm{AV})}$			Typical	$\begin{aligned} & (0.07 \mu \mathrm{~A} / \mathrm{l} \\ & (0.20 \mu \mathrm{~A} / \mathrm{l} \\ & (0.36 \mu \mathrm{l} / \mathrm{l} \end{aligned}$	$\begin{aligned} & (H z) f \\ & (H z) f \\ & (H z) f \end{aligned}$			$\mu \mathrm{A}$

CONTROL INPUT (Voltages Referenced to V_{SS})

Low-Level Input Voltage	5.0	$\mathrm{R}_{\mathrm{on}}=$ per spec,	V_{IL}	-	1.5	-	2.25	1.5	-	1.5
	10	$\mathrm{I}_{\text {off }}=$ per spec		-	3.0	-	4.50	3.0	-	3.0
	15			-	4.0	-	6.75	4.0	-	4.0
High-Level Input Voltage	5.0	$\mathrm{R}_{\text {on }}=$ per spec,	V_{IH}	3.5	-	3.5	2.75	-	3.5	-
	10	$\mathrm{I}_{\text {off }}=$ per spec		7.0	-	7.0	5.50	-	7.0	-
	15			11	-	11	8.25	-	11	-
Input Leakage Current	15	$\mathrm{~V}_{\text {in }}=0$ or V_{DD}	I_{in}	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0
Input Capacitance	-		C_{in}	-	-	-	5 A			

SWITCHES IN/OUT AND COMMONS OUT/IN — W, X, Y, Z (Voltages Referenced to V_{EE})

Recommended Peak-toPeak Voltage Into or Out of the Switch	-	Channel On or Off	$\mathrm{V}_{1 / \mathrm{O}}$	0	V_{DD}	0	-	V_{DD}	0	V_{DD}	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Recommended Static or Dynamic Voltage Across the Switch (Note 3) (Figure 3)	-	Channel On	$\Delta \mathrm{V}_{\text {switch }}$	0	600	0	-	600	0	300	mV
Output Offset Voltage	-	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$, No Load	V_{OO}	-	-	-	10	-	-	-	$\mu \mathrm{V}$
ON Resistance	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\Delta V_{\text {switch }} \leq 500 \mathrm{mV}$ (Note 3), $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ (Control), and $\mathrm{V}_{\text {in }}=0$ to $V_{D D}$ (Switch)	$\mathrm{R}_{\text {on }}$	-	$\begin{aligned} & \hline 800 \\ & 400 \\ & 220 \end{aligned}$	-	$\begin{gathered} \hline 250 \\ 120 \\ 80 \end{gathered}$	$\begin{gathered} 1050 \\ 500 \\ 280 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 1200 \\ 520 \\ 300 \end{gathered}$	Ω
Δ ON Resistance Between Any Two Channels in the Same Package	$\begin{gathered} \hline 5.0 \\ 10 \\ 15 \end{gathered}$		$\Delta \mathrm{R}_{\text {on }}$	-	$\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$	-	$\begin{gathered} 135 \\ 95 \\ 65 \end{gathered}$	Ω
Off-Channel Leakage Current (Figure 8)	15	$V_{\text {in }}=V_{I L} \text { or } V_{\mathrm{IH}}$ (Control) Channel to Channel or Any One Channel	$l_{\text {off }}$	-	± 100	-	± 0.05	± 100	-	± 1000	nA
Capacitance, Switch I/O	-	Switch Off	$\mathrm{Cl}_{1 / \mathrm{O}}$	-	-	-	10	-	-	-	pF
Capacitance, Common O/I	-		$\mathrm{C}_{\mathrm{O} / \mathrm{l}}$	-	-	-	17	-	-	-	pF
Capacitance, Feedthrough (Channel Off)	-	Pins Not Adjacent Pins Adjacent	$\mathrm{Cl}_{1 / \mathrm{O}}$	-	-	-	$\begin{aligned} & 0.15 \\ & 0.47 \end{aligned}$	-	-	-	pF

2. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
3. For voltage drops across the switch $\left(\Delta V_{\text {switch }}\right)>600 \mathrm{mV}$ ($>300 \mathrm{mV}$ at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{SS}}\right)$

Characteristic	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \\ \mathrm{Vdc} \end{gathered}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note } 4 \text {) } \end{gathered}$	Max	Unit
Propagation Delay Times Switch Input to Switch Output ($R_{L}=10 \mathrm{k} \Omega$) $t_{\text {PLH }}, t_{\text {PHL }}=(0.17 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+26.5 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+11 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.06 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.0 \mathrm{~ns}$	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	ns
Control Input to Output ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$) $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}$ (Figure 4)	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 350 \\ & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & 875 \\ & 350 \\ & 250 \end{aligned}$	ns
Second Harmonic Distortion $R_{L}=10 \mathrm{k} \Omega, f=1 \mathrm{kHz}, \mathrm{~V}_{\text {in }}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-	10	-	0.07	-	\%
Bandwidth (Figure 5) $R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right)_{p-p}$, $20 \log \left(V_{\text {out }} / V_{\text {in }}\right)=-3 d B, C_{L}=50 p F$	BW	10	-	17	-	MHz
Off Channel Feedthrough Attenuation, Figure 5 $R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right)_{p-p}, f_{\text {in }}=55 \mathrm{MHz}$	-	10	-	- 50	-	dB
Channel Separation (Figure 6) $R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right)_{p-p}, f_{\text {in }}=3 \mathrm{MHz}$	-	10	-	- 50	-	dB
Crosstalk, Control Input to Common O/I, Figure 7 $R 1=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Control $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$	-	10	-	75	-	mV

4. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Switch Circuit Schematic

Figure 2. MC14551B Functional Diagram

TEST CIRCUITS

Figure 3. $\Delta \mathrm{V}$ Across Switch

Figure 4. Propagation Delay Times, Control to Output

Control input used to turn ON or OFF the switch under test.

Figure 5. Bandwidth and Off-Channel Feedthrough Attenuation

Figure 7. Crosstalk, Control Input to Common O/I

Figure 8. Off Channel Leakage

Figure 9. Channel Resistance ($\mathbf{R O N}_{\mathrm{ON}}$) Test Circuit

TYPICAL RESISTANCE CHARACTERISTICS

Figure 10. $\mathrm{V}_{\mathrm{DD}} @ 7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}} @-7.5 \mathrm{~V}$

Figure 12. $\mathrm{V}_{\mathrm{DD}} @ 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}} @-2.5 \mathrm{~V}$

Figure 11. $\mathrm{V}_{\mathrm{DD}} @ 5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}} @-5.0 \mathrm{~V}$

Figure 13. Comparison at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} @-\mathrm{V}_{\mathrm{EE}}$

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figure 2. The 0-to-5.0 V Digital Control signal is used to directly control a $9 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS}. The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}=$ logic high at the control inputs; $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}=0 \mathrm{~V}=$ logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE}. The V_{DD} voltage determines the maximum recommended peak above V_{SS}. The V_{EE} voltage determines the maximum swing below V_{SS}. For the example, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ $=5.0 \mathrm{~V}$ maximum swing above $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}$ maximum swing below V_{SS}. The example shows a $\pm 4.5 \mathrm{~V}$
signal which allows a $1 / 2 \mathrm{~V}$ margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes $\left(\mathrm{D}_{\mathrm{x}}\right)$ are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{EE} is 18 V . Most parameters are specified up to 15 V which is the recommended maximum difference between $V_{D D}$ and $V_{E E}$.

Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE}. For example, $\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}$ $=+5.0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ is acceptable. See the table below.

Figure A. Application Example

Figure B. External Schottky or Germanium Clipping Diodes

POSSIBLE SUPPLY CONNECTIONS

\mathbf{V}_{DD} In Volts	$\mathbf{V}_{\mathbf{S S}}$ In Volts	\mathbf{V}_{EE} In Volts	Control Inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+8	0	-8	$+8 / 0$	+8 to $-8=16 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	-12	$+5 / 0$	+5 to $-12=17 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	0	$+5 / 0$	+5 to $0=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	-5	$+5 / 0$	+5 to $-5=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+10		-5	$+10 /+5$	to $-5=15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

MC14551B

PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE T

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION L TO CENTER OF LEADS

WHEN FORMED PARALLEL
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	
G	0.100 BSC	2.54		
H	0.050	BSC	1.27	
BSC				
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

PACKAGE DIMENSIONS

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

