# 2.5V/3.3V 3:1:10 Configurable Differential Clock Fanout Buffer with LVCMOS Reference Output 

## Description

The NB3M8T3910G is a 3:1:10 Clock fanout buffer operating on a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ Core $\mathrm{V}_{\mathrm{DD}}$ and a flexible $2.5 \mathrm{~V} / 3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{DDO}}$ supply $\left(\mathrm{V}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}}\right)$.

A 3:1 MUX selects between Crystal oscillator inputs, or either of two differential Clock inputs capable of accepting LVPECL, LVDS, HCSL, or SSTL levels. The MUX select lines, SEL0 and SEL1, accept LVCMOS or LVTTL levels and select input per Table 3. The Crystal input is disabled when a Clock input is selected.

Differential Outputs consist of two banks of five differential outputs with each bank independently mode configurable as LVPECL, LVDS or HCSL. Each bank of differential output pairs is configured with a pair of SMODEAx/Bx select lines using LVCMOS or LVTTL levels per Table 6. Clock input levels and outputs states are determined per Table 5.

The Single-Ended LVCMOS Output, REFOUT, is synchronously enabled by the OE_SE control line per Table 4 using LVCMOS / LVTTL levels. For Clock frequencies above 250 MHz , the REFOUT line should be disabled.
ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
MARKING
DIAGRAM

ORDERING INFORMATION
See detailed ordering and shipping information on page 19 of this data sheet.

## Features

- Crystal, Single-Ended or Differential Input Reference Clocks
- Differential Input Pair can Accept: LVPECL, LVDS, HCSL, SSTL
- Two Output Banks: Each has Five Differential Outputs Configurable as LVPECL, LVDS, or HCSL by SMODEAx/Bx Pins
- One Single-Ended LVCMOS Output with Synchronous OE Control
- LVCMOS/LVTTL Interface Levels for all Control Inputs
- Clock Frequency: Up to 1400 MHz , Typical
- Output Skew: 50 ps (Max)
- Additive RMS Jitter <0.03 ps ( 156.25 MHz , Typical)
- Input to Output Propagation Delay ( 900 ps Typical)
- Operating Supply Modes $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}: 2.5 \mathrm{~V} / 2.5 \mathrm{~V}$, 3.3 V/3.3 V or 3.3 V/2.5 V
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- This is a $\mathrm{Pb}-$ Free Device


## Applications

- Clock Distribution
- Telecom
- Networking
- Backplane
- High End Computing
- Wireless and Wired Infrastructure


## End Products

- Servers
- Ethernet Switch/Routers
- ATE
- Test and Measurement


Figure 1. Simplified Logic Diagram


Figure 2. QFN-48 Pinout Configuration (Top View)

Table 1. PIN DESCRIPTION

| Number | Name | Type | Default (Internal Resistors) | Description |
| :---: | :---: | :---: | :---: | :---: |
| 1, 2 | QA0, QAO | Output |  | Bank A differential output pair Q0. Configurable as LVPECL / LVDS / HCSL |
| 3, 4 | QA1, QA1 | Output |  | Bank A differential output pair Q1. Configurable as LVPECL / LVDS / HCSL |
| 5, 8 | VDDOA | Power |  | VDDOA Positive Supply pin for Bank A outputs. VDDOA pins must all be externally connected to a power supply to guarantee proper operation. Bypass with $0.01 \mu \mathrm{~F}$ cap to GND |
| 29, 32 | VDDOB | Power |  | VDDOB Positive Supply pin for Bank B outputs. VDDOB pins must all be externally connected to a power supply to guarantee proper operation. Bypass with $0.01 \mu \mathrm{~F}$ cap to GND |
| 45 | VDDOC | Power |  | VDDOC Positive Supply pin for REFOUT output. VDDOC pin must be externally connected to a power supply to guarantee proper operation. Bypass with $0.01 \mu \mathrm{~F}$ cap to GND |
| 6,7 | QA2, QA2 | Output |  | Bank A differential output pair Q2. Configurable as LVPECL / LVDS / HCSL. |
| 9,10 | QA3, QA3 | Output |  | Bank A differential output pair Q3. Configurable as LVPECL / LVDS / HCSL |
| 11,12 | QA4, $\overline{\text { QA4 }}$ | Output |  | Bank A differential output pair Q4. Configurable as LVPECL / LVDS / HCSL |
| $\begin{aligned} & \hline 13,18, \\ & 24,37, \\ & 43,48 \end{aligned}$ | GND | Power |  | Ground Supply. All GND pins must be externally connected to power supply to guarantee proper operation. |
| 14, 47 | SMODEA0 / <br> SMODEA1 | Input | Pulldown | Output driver selectors for BANK A. See Table 6 for function. LVCMOS/LVTTL levels. |

Table 1. PIN DESCRIPTION

| Number | Name | Type | Default <br> (Internal <br> Resistors) |  |
| :---: | :---: | :---: | :---: | :--- |
| 15,42 | VDD | Power |  | VDD Positive Supply pin for core logic. VDD pins must all be externally <br> connected to a power supply to guarantee proper operation. Bypass with <br> $0.01 ~ \mu F ~ c a p ~ t o ~ G N D . ~$ |$|$| Crystal input / output. XTAL_IN can also be driven by X0, TCX0 or other |
| :--- |
| external single-ended clock. |

Table 2. PIN CHARACTERISTICS

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| CIN | Input Capacitance |  | 4 |  | pF |
| RPU/RPD | Input Pullup/Pulldown Resistor |  | 50 |  | $\mathrm{k} \Omega$ |

Table 3. SELx INPUT SELECT TABLE

| SEL[1:0] Inputs | Selected Input |
| :---: | :---: |
| 00 | CLK0/CLK0 |
| 01 | CLK1/CLK1 |
| 10 | XTAL |
| 11 | XTAL |

Table 4. OE_SE OUTPUT CONTROL TABLE FOR REFOUT

| OE_SE Input Level | REFOUT Status |
| :---: | :---: |
| Low | High Impedance |
| High | Enabled |

Table 5. DIFF CLK INPUT / OUTPUT TABLE (Diff or S.E. stimulus)

| Input State | Output State |
| :---: | :---: |
| $\mathrm{CLKx}=\mathrm{LOW}, \overline{\mathrm{CLK}}=\mathrm{HIGH}$ | $\mathrm{Qx}=\mathrm{LOW}, \overline{\mathrm{Qx}}=\mathrm{HIGH}$ |
| $\mathrm{CLKx}=\mathrm{HIGH}, \overline{\mathrm{CLK}} \mathrm{x}=\mathrm{LOW}$ | $\mathrm{Qx}=\mathrm{HIGH}, \overline{\mathrm{Qx}}=\mathrm{LOW}$ |
| $\mathrm{CLK} x=$ Open$; \overline{\mathrm{CLK}} x=\mathrm{Open}$ | $\mathrm{Qx}=\mathrm{LOW}, \overline{\mathrm{Qx}}=\mathrm{HIGH}$ |
| $\mathrm{CLK} x=\mathrm{LOW} ; \overline{\mathrm{CLK} x}=\mathrm{LOW}$ | $\mathrm{Qx}=\mathrm{LOW}, \overline{\mathrm{Qx}}=\mathrm{HIGH}$ |
| $\mathrm{CLK} x=\mathrm{HIGH} ; \overline{\mathrm{CLK} x}=\mathrm{HIGH}$ | $\mathrm{Qx}=\mathrm{LOW}, \overline{\mathrm{Qx}}=\mathrm{HIGH}$ |

Table 6. OUTPUT MODE CONFIGURATION TABLE

| SMODEA/B[1:0] Inputs | Output Mode |
| :---: | :---: |
| 00 | LVPECL output. |
| 01 | LVDS output. |
| 10 | HCSL output. |
| 11 | High Impedance. |

Table 7. ATTRIBUTES

| Characteristic | Value |  |
| :--- | ---: | :---: |
| ESD Protection | Human Body Model <br> Machine Model | $>2 \mathrm{kV}$ |
|  | 200 V |  |

1. For additional information, see Application Note AND8003/D.

Table 8. MAXIMUM RATINGS (Note 2)

| Symbol | Parameter | Condition | Rating | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Positive Power Supply | GND $=0 \mathrm{~V}$ | 4.6 | V |
| $V_{1}$ | XTAL_IN Input Voltage CLKx/CLKx; SELx; SMODExx; OS_SE |  | $\begin{gathered} 0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}} \\ -0.5 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDO}}+0.5 \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{0}$ | Output Voltage | HCSL; LVCMOS | $-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DDO}}+0.5$ | V |
| $\mathrm{I}_{0}$ | LVPECL Output Current | Continuous Current Surge Current | $\begin{gathered} 50 \\ 100 \end{gathered}$ | mA |
| $I_{0}$ | LVDS Output Current | Continuous Current Surge Current | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | mA |
| $\mathrm{V}_{\text {OHCSL }}$ | Output Voltage (HCSL) |  | -0.5 to $\mathrm{V}_{\text {DDO }}+0.5$ | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range, Industrial |  | -40 to 85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\text {JA }}$ | Thermal Resistance (Junction-to-Ambient) | $\begin{gathered} 0 \text { lfpm } \\ 500 \text { lfpm } \end{gathered}$ | $\begin{aligned} & 30.5 \\ & 24.9 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta_{\text {Jc }}$ | Thermal Resistance (Junction-to-Case) | (Note 2) | 12-17 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {sol }}$ | Soldering Temperature |  | +260 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. JEDEC standard multilayer board -2S2P (2 signal, 2 power).

## DC ELECTRICAL CHARACTERISTICS

Table 9. DC ELECTRICAL CHARACTERISTICS POWER SUPPLY DC CHARACTERISTICS,
GND $=0.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | Core Supply Voltage |  | 2.375 |  | 3.465 | V |
| $\mathrm{V}_{\text {DDOx }}$ | Output Supply Voltage |  | 2.375 |  | 3.465 | V |
| IDD | Core Supply Current | LVPECL Outputs LVDS Outputs HCSL Outputs |  | $\begin{gathered} 85 \\ 155 \\ 90 \end{gathered}$ | $\begin{aligned} & 120 \\ & 185 \\ & 120 \end{aligned}$ | mA |
| IDDO | Output Supply Current | All LVPECL Outputs Unloaded ALL LVDS Outputs Loaded All HCSL Output Unloaded |  | 50 60 45 | 70 80 60 | mA |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.

Table 10. LVCMOS/LVTTL DC, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; $\mathrm{GND}=0.0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage <br> (SEL0/1, SMODEA0/1, SMODEB0/1 <br> OE_SE) | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} 2 \\ 1.7 \end{gathered}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}+0.3 \\ & \mathrm{~V}_{\mathrm{DD}}+0.3 \end{aligned}$ | V |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage <br> (SEL0/1, SMODEA0/1, SMODEB0/1 <br> OE_SE) | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \hline-0.3 \\ & -0.3 \end{aligned}$ |  | $\begin{aligned} & \hline 0.8 \\ & 0.7 \end{aligned}$ | V |
| $\mathrm{IIH}^{\text {H }}$ | Input High Current <br> (SEL0/1, SMODEA0/1, SMODEB0/1 OE_SE) | $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$ |  |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input Low Current <br> (SEL0/1, SMODEA0/1, SMODEB0/1 <br> OE_SE) | $\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ | -150 |  |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage (Note 3) REFOUT | $\begin{aligned} & \mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \% \end{aligned}$ | $\begin{aligned} & 2.3 \\ & 1.5 \end{aligned}$ |  |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage (Note 3) REFOUT | $\begin{aligned} & \mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \% \end{aligned}$ |  |  | $\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$ | V |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
3. Outputs terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{DDO}} / 2$. See Parameter Measurement Information.

Table 11. DIFFERENTIAL INPUT DC CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; GND $=0.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter |  | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{IIH}^{\text {H }}$ | Input High Current | CLKO, CLK1, CLKO, CLK1 | $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$ |  |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input Low Current | $\begin{aligned} & \text { CLK0, CLK1 } \\ & \hline \text { CLKO, } \end{aligned}$ | $\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ | -150 |  |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {ID }}$ | Input Voltage Swing (Note 4) |  |  | 0.15 |  | 1.3 | V |
| $\mathrm{V}_{\text {CMR }}$ | Common Mode Input Voltage; (Notes 4 and 5) |  |  | $\begin{aligned} & \text { GND } \\ & +0.5 \end{aligned}$ |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}}- \\ 0.85 \end{gathered}$ | V |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. $\mathrm{V}_{\text {IL }}$ should not be less than -0.3 V .
5. Common mode input voltage is defined as $\mathrm{V}_{\mathrm{IH}}$.

Table 12. LVPECL DC OUTPUT CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; GND $=0.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 6)

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OH }}$ | Output High voltage | $\mathrm{V}_{\mathrm{DDO}}-$ <br> 1.4 |  | $\mathrm{V}_{\mathrm{DDO}}-$ <br> 0.9 | V |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output Low voltage | $\mathrm{V}_{\mathrm{DDO}}-$ <br> 2.1 | $\mathrm{V}_{\mathrm{DDO}}-$ <br> 1.7 | V |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
6. Output pairs are terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{DDO}}-2 \mathrm{~V}$.

Table 13. LVDS DC OUTPUT CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; GND $=0.0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. (Note 7)

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage |  | 1.433 |  | V |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output Low Voltage |  | 1.064 |  | V |
| $\mathrm{~V}_{\mathrm{OD}}$ | Differential Output Voltage | 250 |  |  | mV |
| $\Delta \mathrm{V}_{\mathrm{OD}}$ | $\mathrm{V}_{\text {OD }}$ Magnitude Change |  |  | 25 | mV |
| $\mathrm{V}_{\mathrm{OS}}$ | Offset Voltage | 1.125 | 1.25 | 1.375 | V |
| $\Delta \mathrm{~V}_{\mathrm{OS}}$ | $\mathrm{V}_{\text {OS }}$ Magnitude Change |  |  | 25 | mV |
| $\mathrm{R}_{\mathrm{O}}$ | Output Impedance | 85 |  | 140 | $\Omega$ |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
7. Output pairs are terminated with $100 \Omega$ line to line at receiver.

Table 14. HCSL DC OUTPUT CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; GND $=0.0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. (Note 8)

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OH }}$ | HCSL Output HIGH Voltage | 520 |  | 920 | mV |
| $\mathrm{V}_{\mathrm{OL}}$ | HCSL Output LOW Voltage | 0 |  | 150 | mV |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
8. Output pairs are terminated with $50 \Omega$ to GND.

Table 15. CRYSTAL CHARACTERISTICS

| Parameter | Test Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode of Oscillation |  | Fundamental |  |  |  |
| Frequency |  | 10 |  | 50 | MHz |
| Equivalent Series Resistance (ESR) |  |  |  | 70 | $\Omega$ |
| Shunt Capacitance |  |  |  | 7 | pF |
| Load Capacitance |  | 10 |  | 18 | pF |
| Crystal Drive Level |  |  |  | 100 | $\mu \mathrm{~W}$ |

## AC ELECTRICAL CHARACTERISTICS

Table 16. AC ELECTRICAL CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; GND $=0.0 \mathrm{~V}$;
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 9)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fosc | Input Frequency | External Crystal Input | 10 |  | 50 | MHz |
| fout | Output Frequency | Diff CLKx/CLKx Inputs OUTPUTS: LVPECL OUTPUTS: LVDS OUTPUTS: HCSL OUTPUTS: REFOUT |  | $\begin{gathered} 1400 \\ 1200 \\ 250 \\ 250 \end{gathered}$ |  | MHz |
|  |  | Single-ended Inputs <br> XTAL_IN, CLKx, or CLKx |  | 250 |  |  |
| $\mathrm{t}_{\text {JITTER }}{ }^{\text {® }}$ | Buffer Additive RMS Phase Jitter (Integrated $12 \mathrm{kHz}-20 \mathrm{MHz}$ ) | Diff CLKx/CLKx Inputs |  | 0.03 |  | ps |
|  |  | Single ended XTAL_IN |  | 0.03 |  |  |
| $t_{\text {PD }}$ | Propagation Delay; | CLKx/CLKx to any Qx/Qx <br> Output Mode LVPECL <br> Output Mode LVDS <br> Output Mode HCSL <br> Output REFOUT, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ | $\begin{gathered} 700 \\ 850 \\ 950 \\ 1600 \end{gathered}$ | $\begin{gathered} 900 \\ 1100 \\ 1300 \\ 2000 \end{gathered}$ | $\begin{aligned} & 1200 \\ & 1400 \\ & 1650 \\ & 2600 \end{aligned}$ | ps |
| $\mathrm{t}_{\text {sk(0) }}$ | Output-to-Output Skew | Any Two Clock Outputs with the Same Buffer Type and Same Load |  | 25 | 50 | ps |
| $\mathrm{t}_{\text {sk(pp) }}$ | Part-to-Part Skew; | Output Mode LVPECL <br> Output Mode LVDS <br> Output Mode HCSL |  | 45 30 30 |  | ps |
| TOD | Valid to High Z Delay, Output Disable | $\mathrm{CLK}_{\mathrm{x}} / \mathrm{CLK}_{\mathrm{x}}$ |  |  | 200 | ns |
| $\mathrm{T}_{\text {OE }}$ | High Z to Valid Delay, Output Enable | $\mathrm{CLK}_{\mathrm{x}} / \mathrm{CLK}_{\mathrm{x}}$ |  |  | 200 | ns |
| $\mathrm{V}_{\mathrm{RB}}$ | Ringback Voltage Margin (Notes 10, 11) | HCSL Output | -100 |  | 100 | mV |
| $\mathrm{V}_{\text {MAX }}$ | Voltage High (Notes 12, 13) | HCSL Output | 520 |  | 920 | mV |
| $\mathrm{V}_{\text {MIN }}$ | Voltage Low (Notes 12, 14) | HCSL Output | -150 |  | 150 | mV |
| $\mathrm{V}_{\text {cross }}$ | Absolute Crossing Voltage (Notes 12, 15, 16) | HCSL Output | 160 |  | 460 | mV |
| $\Delta \mathrm{V}_{\text {CROSS }}$ | Total Variation of VCROSS over all edges; (Notes 12, 15 and 17) | HCSL Output |  |  | 140 | mV |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
9. OUTPUT MODE LVPECL: Output pairs are terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{DDO}}-2 \mathrm{~V}$. OUTPUT MODE LVDS: Output pairs are terminated with $100 \Omega$ line to line at receiver. OUTPUT MODE HCSL: Output pairs are terminated with $50 \Omega$ to GND REFOUT Output terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{DDO}} / 2$.
10. Measurement taken from differential waveform.
11. TSTABLE is the time the differential clock must maintain a minimum $\pm 150 \mathrm{mV}$ differential voltage after rising/falling edges before it is allowed to drop back into the VRB $\pm 100 \mathrm{mV}$ differential range.
12. Measurement taken from single-ended waveform.
13. Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.
14. Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.
15. Measured at crossing point where the instantaneous voltage value of the rising edge of $Q_{x}$ equals the falling edge of $\overline{Q x}$.
16. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
17. Defined as the total variation of all crossing voltages of rising $Q_{x}$ and falling $n Q_{x}$, This is the maximum allowed variance in $V_{\text {cross }}$ for any particular system.
18. Measured from -150 mV to +150 mV on the differential waveform $\left(\mathrm{Q}_{\mathrm{x}}\right.$ minus $\left.n \mathrm{Q}_{\mathrm{x}}\right)$. The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

Table 16. AC ELECTRICAL CHARACTERISTICS, $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} / 2.5 \mathrm{~V}, 3.3 \mathrm{~V} / 3.3 \mathrm{~V}$ or $3.3 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$; GND $=0.0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 9)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta t_{R} / \Delta t_{F}$ | Rise/Fall Edge Rate (Notes 12, and 18) | HCSL Outputs; Measured between 150 mV to +150 mV | 0.6 |  | 4.0 | V/ns |
| $t_{R} / t_{F}$ | Output Rise/Fall Time | HCSL Outputs $20 \%$ to $80 \%$ at 50 MHz $\begin{aligned} & \mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 250 \\ & 250 \end{aligned}$ |  | $\begin{aligned} & 550 \\ & 750 \\ & 75 \end{aligned}$ | ps |
| $t_{\text {R }} / t_{F}$ | Output Rise/ Fall Time | LVDS Outputs ( $20 \%$ to $80 \%$ at | $\begin{aligned} & 150 \\ & 150 \end{aligned}$ |  | $\begin{aligned} & 500 \\ & 550 \end{aligned}$ | ps |
| $t_{\text {R }} / t_{F}$ | Output Rise/ Fall Time | LVPECL Outputs ( $20 \%$ to $80 \%$ at <br> $50 \mathrm{MHz} \quad \mathrm{V}_{\text {DDO }}=3.3 \mathrm{~V}$ <br> $V_{\text {DDO }}=2.5 \mathrm{~V}$ | $\begin{aligned} & 125 \\ & 125 \end{aligned}$ |  | $\begin{aligned} & 325 \\ & 375 \end{aligned}$ | ps |
| $t_{R} / t_{F}$ | Output Rise/ Fall Time | REFOUT ( $20 \%$ to $80 \%$ at 50 MHz ) $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ |  | 550 |  | ps |
| odc | Output Duty Cycle | $\mathrm{f} \leq 350 \mathrm{MHz}$ LVPECL <br> $\mathrm{f} \leq 250 \mathrm{MHz}$ HCSL <br> $\mathrm{f} \leq 350 \mathrm{MHz}$ LVDS | $\begin{aligned} & 48 \\ & 48 \\ & 47 \end{aligned}$ |  | $\begin{aligned} & 52 \\ & 52 \\ & 53 \end{aligned}$ | \% |
|  |  | $\begin{array}{ll} \hline \mathrm{f}=50 \mathrm{MHz} & \text { REFOUT } \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} & \end{array}$ | 45 |  | 55 | \% |
| $\mathrm{V}_{\mathrm{PP}}$ | Output Swing Single-Ended | LVPECL Outputs LVDS Outputs HCSL Outputs | $\begin{aligned} & 400 \\ & 250 \\ & 520 \end{aligned}$ |  | 1000 | mV |
| MUX_ISOLATION | MUX Isolation | 156.25 MHz | 55 |  |  | dB |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
9. OUTPUT MODE LVPECL: Output pairs are terminated with $50 \Omega$ to $\mathrm{V}_{\text {DDO }}-2 \mathrm{~V}$.

OUTPUT MODE LVDS: Output pairs are terminated with $100 \Omega$ line to line at receiver. OUTPUT MODE HCSL: Output pairs are terminated with $50 \Omega$ to GND REFOUT Output terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{DDO}} / 2$.
10. Measurement taken from differential waveform.
11. TSTABLE is the time the differential clock must maintain a minimum $\pm 150 \mathrm{mV}$ differential voltage after rising/falling edges before it is allowed to drop back into the VRB $\pm 100 \mathrm{mV}$ differential range.
12. Measurement taken from single-ended waveform.
13. Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.
14. Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.
15. Measured at crossing point where the instantaneous voltage value of the rising edge of $Q_{x}$ equals the falling edge of $\overline{Q x}$.
16. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
17. Defined as the total variation of all crossing voltages of rising $Q_{x}$ and falling $n Q_{x}$, This is the maximum allowed variance in $V_{\text {cross }}$ for any particular system.
18. Measured from -150 mV to +150 mV on the differential waveform $\left(\mathrm{Q}_{\mathrm{x}}\right.$ minus $\left.\mathrm{n} \mathrm{Q}_{\mathrm{x}}\right)$. The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

## NB3M8T3910G

## TYPICAL PERFORMANCE CHARACTERISTICS

$$
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$



Figure 3. LVPECL Output Swing @ 156.25 MHz


Figure 4. LVDS Output Swing @ 156.25 MHz


Figure 5. HCSL Output Swing @ 156.25 MHz

## NB3M8T3910G

## TYPICAL PERFORMANCE CHARACTERISTICS

$$
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$



Figure 6. LVPECL Phase Noise @ 156.25 MHz


Figure 7. LVDS Phase Noise @ 156.25 MHz

## NB3M8T3910G

## TYPICAL PERFORMANCE CHARACTERISTICS

$$
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$



Figure 8. HCSL Phase Noise @ 156.25 MHz

## PARAMETER MEASUREMENT INFORMATION



Figure 9. Differential Input Level


Figure 11. Device to Device Output Skew x = Bank A or Bank B


Figure 10. Within Device Output Skew x=Bank A or Bank B


Figure 12. Propagation Delay


Figure 13. MUX Isolation

## NB3M8T3910G

## PARAMETER MEASUREMENT INFORMATION



Figure 14. Output Rise/Fall Time


Figure 15. Output Duty Cycle / Pulse Width /
Period


Figure 17. LVDS Differential Output
Voltage Setup


Figure 18. Differential Measurement Points for Duty Cycle / Pulse Width / Period


Figure 20. Single-Ended Measurement Points for HCSL Absolute Crossing Voltage


Figure 19. HCSL Differential Measurement Points for Ringback


Figure 21. Single-Ended Measurement Points for HCSL $\Delta V_{\text {CROSS }}$

## APPLICATION INFORMATION

## Recommendations for Unused Input and Output Pins

## Inputs:

## CLK/CLK Inputs

For applications not requiring the use of the differential input, both CLK and CLK can be left floating. Though not required, but for additional protection, a $1 \mathrm{k} \Omega$ resistor can be tied from CLK to ground.

## Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1 \mathrm{k} \Omega$ resistor can be tied from XTAL_IN to ground.

## LVCMOS Control Pins

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k} \Omega$ resistor can be used.

## Outputs:

## LVCMOS Outputs

The unused LVCMOS output can be left floating and recommend that there is no trace attached.

## Differential Outputs

All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

## LVPECL Outputs

All unused LVPECL output pairs can be left floating. We recommend that there is no trace attached. Both sides of the
differential output pair should either be left floating or terminated.

## LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with $100 \Omega$ across. If they are left floating, we recommend that there is no trace attached.

## Differential Input with Single-Ended Interconnect

Refer to Figure 22 to interconnect a single ended signal to a Differential Pair of inputs. The reference bias voltage VREF $=\mathrm{V}_{\mathrm{DD}} / 2$ is generated by the resistor divider of R 1 and R 2 . Bypass capacitor ( C 1 ) can filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. Adjust R1 and R2 to common mode voltage of the signal input swing to preserve duty cycle.

This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination by R3 and R4 will attenuate the signal amplitude in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most $50 \Omega$ applications, R3 and R4 can be $100 \Omega$. The differential input can handle full rail LVCMOS signaling, but it is recommended that the amplitude be reduced. The datasheet specifies differential amplitude which needs to be doubled for a single ended equivalent stimulus. $\mathrm{V}_{\mathrm{IL} \min }$ cannot be less than -0.3 V and $\mathrm{V}_{\mathrm{IH}} \max$ cannot be more than $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$. The datasheet specifications are characterized and guaranteed by using a differential signal.


Figure 22. Differential Input with Single-Ended Interconnect

## Crystal Input Interface

The device has been characterized with 18 pF parallel resonant crystals. The capacitor values, C 1 and C 2 , shown in Figure 23 below were determined using an 18 pF parallel resonant crystal and were chosen to minimize the ppm error. The C 1 and C 2 load caps are in parallel and must be reduced by any input and stray capacitance. Typical value would be 36 pF minus all input and stray capacitance, or about 25 to 30 pF . The optimum C1 and C2 values can be slightly adjusted for different board layouts.


## CLOCK Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general LVCMOS interface diagram is shown in Figure 24 and a general LVPECL interface in Figure 25. The XTAL_OUT pin must be left floating. The maximum amplitude of the input signal should not exceed 2 V and the input edge rate can be as slow as 10 ns . This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most $50 \Omega$ applications, R1 and R2 can be $100 \Omega$. This can also be accomplished by removing R1 and making R2 $50 \Omega$. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 23. Crystal Input Interface


Figure 24. General Diagram for LVCMOS Driver to XTAL Input Interface


Figure 25. General Diagram for LVPECL Driver to XTAL Input Interface

HCSL RECOMMENDED TERMINATION


Figure 26. HCSL Recommended Interconnect and Termination Board to Board

Figure 26 is the recommended termination for applications which require the receiver and driver to be on a separate PCB. All traces should be $50 \Omega$ impedance.


Figure 27. Recommended Termination Interconnect and Termination within a Board

Figure 27 is the recommended termination for applications which require a point to point connection and contain the driver and receiver on the same PCB. All traces should all be $50 \Omega$ impedance.

## LVDS Driver Termination

A general LVDS interface is shown in Figure 28. Standard termination for LVDS type output structure requires both a $100 \Omega$ parallel resistor at the receiver and a $100 \Omega$ differential transmission line environment. In order to avoid any transmission line reflection issues, the $100 \Omega$ resistor must be placed as close to the receiver as possible. The standard termination schematic as shown in Figure 28 can
be used with either type of output structure. In addition, since these outputs are LVDS compatible, the amplitude and common mode input range of the input receivers should be verified for compatibility with the output.


Figure 28. Typical LVDS Driver Termination

## Termination for 3.3 V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current


Figure 29. CLK / CLK Input Driven by 3.3 V LVPECL Driver (Thevenin Parallel Termination)

## Termination for 2.5 V LVPECL Outputs

Figures 31 and 32 show examples of termination for 2.5 V LVPECL driver. These terminations are equivalent to terminating $50 \Omega$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V}$, the $\mathrm{V}_{\mathrm{DDO}}$


Figure 31. CLK / CLK Input Driven by 2.5 V LVPECL Driver (Thevenin Parallel Termination)
sources must be used for functionality. These outputs are designed to drive $50 \Omega$ transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 29 and 30 show two different layouts which are recommended only as guidelines. Consult AND8020/D for further termination information


Figure 30. CLK / CLK Input Driven by 3.3 V LVPECL Driver ("Y" Parallel Termination)
-2 V is very close to ground level. The R3 in Figure 32 can be eliminated and the termination is shown in Figure 33. Consult AND8020 for further termination information


Figure 32. CLK / CLK Input Driven by 2.5 V LVPECL Driver ("Y" Parallel Termination)


Figure 33. CLK / CLK Input Driven by 2.5 V LVPECL Driver (Modified "Y" Parallel Termination)

## NB3M8T3910G

## QFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 34. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed $\mathrm{pad} / \mathrm{slug}$ area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected
to ground through these vias. The vias act as thermal conduits. The number of vias may be application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13 mils ( 0.30 to 0.33 mm ) with 1 oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only.


Figure 34. P.C. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: |
| NB3M8T3910GMNR2G | QFN48 <br> (Pb-Free) | $2500 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## PACKAGE DIMENSIONS

QFN48 7x7, 0.5P
CASE 485AJ
ISSUE O


OPTIONAL CONSTRUCTION 2 X SCALE

NOTES:

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO THE PLATED TERMINAL AND IS MEASURED ABETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

|  | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: |
| DIM | MIN | MAX |  |
| A | 0.80 | 1.00 |  |
| A1 | 0.00 | 0.05 |  |
| A3 | 0.20 |  |  |
| REF |  |  |  |
| b | 0.20 |  |  |
| D | 0.30 |  |  |
| D | 7.00 |  |  |
| BSC | 5.20 |  |  |
| E | 7.00 |  |  |
|  | 5.20 |  |  |
| E2 | 5.00 | 5.20 |  |
| e | 0.50 |  |  |
| KSC |  |  |  |
| K | 0.20 | -- |  |
| L | 0.30 | 0.50 |  |



For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and the - 1 N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

