

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdicii on or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, and lisch for insch adages that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor reducts for any such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor for use as a critical device

DM74ALS245A Octal 3-STATE Bus Transceiver

FAIRCHILD

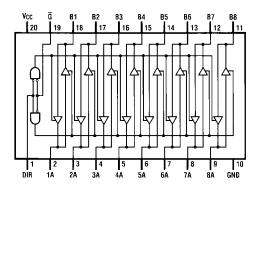
SEMICONDUCTOR

DM74ALS245A Octal 3-STATE Bus Transceiver

General Description

This advanced low power Schottky device contains 8 pairs of 3-STATE logic elements configured as octal bus transceivers. These circuits are designed for use in memory, microprocessor systems and in asynchronous bidirectional data buses. Two way communication between buses is controlled by the (DIR) input. Data transmits either from the A bus to the B bus or from the B bus to the A bus. Both the driver and receiver outputs can be disabled via the (\overline{G}) enable input which causes outputs to enter the high impedance mode so that the buses are effectively isolated.

Features


- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Non-inverting logic output
- Glitch free bus during power up and down
- 3-STATE outputs independently controlled on A and B buses
- \blacksquare Low output impedance to drive terminated transmission lines to 133 Ω
- \blacksquare Switching response specified into 500 $\Omega/50~\text{pF}$
- \blacksquare Specified to interface with CMOS at V_{OH} = V_{CC} 2V
- PNP inputs to reduce input loading
- Switching specifications guaranteed over full temperature and V_{CC} range

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS245AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74ALS245ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS245AMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS245AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Control Inputs		Operation
G	DIR	
L	L	B Data to A Bus
L	н	A Data to B Bus
н	Х	Hi-Z

H = HIGH Logic Level

L = LOW Logic Level X = Either HIGH or LOW Logic Level

© 2000 Fairchild Semiconductor Corporation DS006213

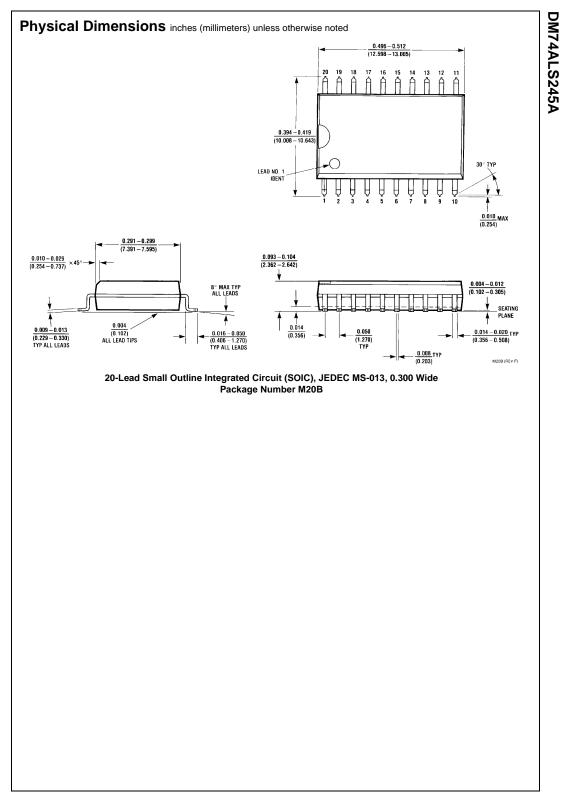
Absolute Maximum Ratings(Note 1)

7V
7V
5.5V
$0^{\circ}C$ to $+70^{\circ}C$
$-65^{\circ}C$ to $+150^{\circ}C$
53.0°C/W
72.0°C/W

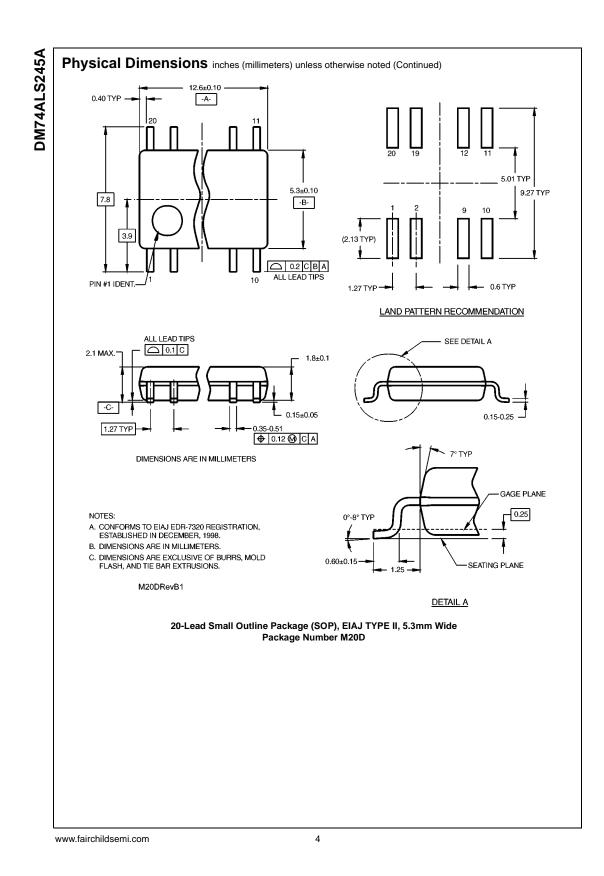
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

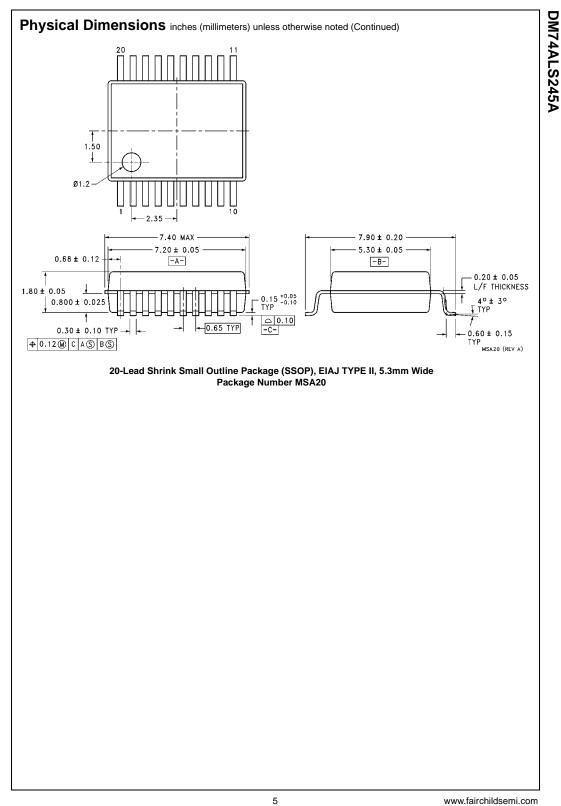
Recommended Operating Conditions

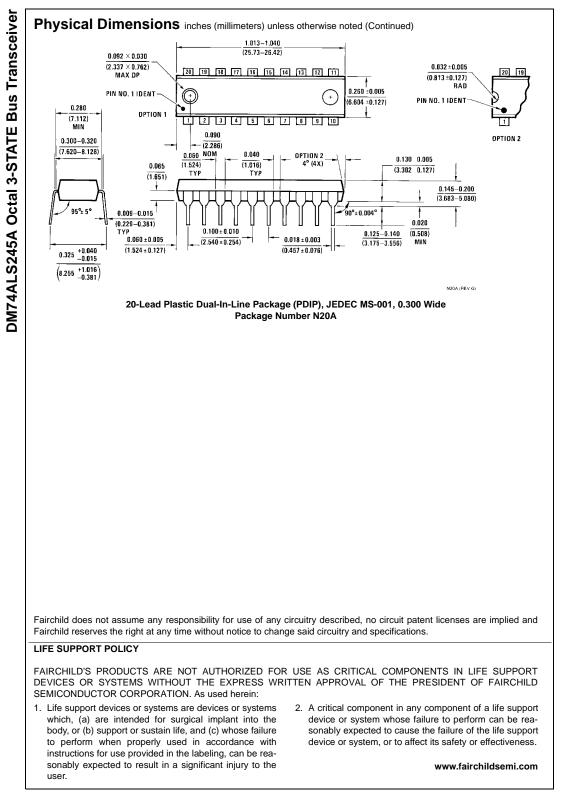
Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
T _A	Operating Free Air Temperature	0		70	°C


Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Symbol	Parameter		Conditions			Тур	Max	Units
V _{IK}	Input Clamp Voltage	V _{CC} = 4.5V, I _{IN} =	V _{CC} = 4.5V, I _{IN} = -18 mA				-1.5	V
V _{OH}	HIGH Level	$V_{CC} = 4.5V, I_{OH}$	$V_{CC} = 4.5V, I_{OH} = -3 \text{ mA}$			3.2		V
	Output Voltage	$V_{CC} = 4.5V, I_{OH}$	$V_{CC} = 4.5V$, $I_{OH} = Max$		2	2.3		V
		$I_{OH} = -0.4$ mA, $V_{CC} = 4.5$ V to 5.5V			$V_{CC} - 2$			V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V$	I _{OL} = 24 mA			0.35	0.5	V
l _l I	Input Current at Maximum	$V_{CC} = 5.5V$	$V_{IN} = 7V$	Control Inputs			0.1	mA
	Input Voltage		$V_{IN} = 5.5V$	A or B Ports			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IN} = 2.7V$				20	μA	
IIL	LOW Level Input Current	$V_{CC} = 5.5 V, V_{IN} = 0.4 V$				-0.1	mA	
I _O	Output Drive Current	$V_{CC} = 5.5V, V_{OUT} = 2.25V$		-30		-112	mA	
I _{CC}	Supply Current	$V_{CC} = 5.5V$	Outputs HIGH	1		30	45	mA
			Outputs LOW			36	55	mA
			3-STATE			38	58	mA


Switching Characteristics (Note 2)


Symbol	Parameter	Circuit Configuration	Min	Max	Units
t _{PLH}	Propagation Delay Time		3	10	ns
	LOW-to-HIGH Level Output		5	10	115
t _{PHL}	Propagation Delay Time		3	10	
	HIGH-to-LOW Level Output		3	10	ns
t _{PZL}	Output Enable Time to LOW Level		5	20	ns
t _{PZH}	Output Enable Time to HIGH Level	" [⊑] ⊸°⊂⊂¬	5	20	ns
t _{PLZ}	Output Disable Time from LOW Level	A OR B	4	15	ns
t _{PHZ}	Output Disable Time from HIGH Level		2	10	ns

3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.