ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC74VHC4066

Quad Analog Switch/ Multiplexer/Demultiplexer

High-Performance Silicon-Gate CMOS

The MC74VHC4066 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The VHC4066 is identical in pinout to the metal-gate CMOS MC14066 and the high-speed CMOS HC4066A. Each device has four independent switches. The device has been designed so that the ON resistances (R_{ON}) are much more linear over input voltage than R_{ON} of metal-gate CMOS analog switches.

The ON/OFF control inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. For analog switches with voltage-level translators, see the VHC4316.

Features

- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Wide Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0$ to 12.0 Volts
- Analog Input Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0$ to 12.0 Volts
- Improved Linearity and Lower ON Resistance over Input Voltage than the MC14016 or MC14066
- Low Noise
- Chip Complexity: 44 FETs or 11 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

PIN ASSIGNMENT

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
SOIC-14
CASE 751A

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHC4066DR2G	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
MC74VHC4066DTR2G	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Logic Diagram
MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)	-0.5 to +14.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I	DC Current Into or Out of Any Pin	± 25	mA
P_{D}	Power Dissipation in Still Air,SOIC Packaget TSSOP Packaget	500	mW
	450		
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)	2.0	12.0	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (Referenced to GND)	GND	V_{CC}	V
$V_{\text {in }}$	Digital Input Voltage (Referenced to GND)	GND	V_{CC}	V
$\mathrm{V}_{10}{ }^{*}$	Static or Dynamic Voltage Across Switch	-	1.2	V
T_{A}	Operating Temperature, All Package Types	-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time, ON/OFF Control Inputs (Figure 14) $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=12.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 600 \\ 500 \\ 400 \\ 250 \end{gathered}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
${ }^{*}$ For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both $V_{C c}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\begin{gathered} \leq \\ 125^{\circ} \mathrm{C} \end{gathered}$	
V_{IH}	Minimum High-Level Voltage ON/OFF Control Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	V
V_{IL}	Maximum Low-Level Voltage ON/OFF Control Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	V
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current ON/OFF Control Inputs	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	12.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{10}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{gathered} 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\begin{gathered} \leq \\ 125^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{R}_{\text {on }}$	Maximum "ON" Resistance	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to GND } \\ & \mathrm{IS}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \end{aligned}$ (Figures 2 through 7)	$\begin{gathered} \hline 2.0 \dagger \\ 3.0 \dagger \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} \overline{-} \\ 120 \\ 70 \\ 70 \end{gathered}$	$\begin{gathered} \overline{-} \\ 160 \\ 85 \\ 85 \end{gathered}$	$\begin{aligned} & \overline{\overline{2}} \\ & 200 \\ & 100 \\ & 100 \end{aligned}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or GND (Endpoints) } \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \\ & \text { (Figures } 2 \text { through } 7 \text {) } \end{aligned}$	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \overline{-} \\ & 70 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & \hline 85 \\ & 60 \\ & 60 \end{aligned}$	$\begin{gathered} \overline{-} \\ 100 \\ 80 \\ 80 \end{gathered}$	
$\Delta \mathrm{R}_{\text {on }}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {IS }}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}\right) \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \overline{20} \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \overline{25} \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & 30 \\ & 25 \\ & 25 \end{aligned}$	Ω
loff	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { Switch Off } \end{aligned}$	12.0	0.1	0.5	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {on }}$	Maximum On-Channel Leakage Current, Any One Channel	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	12.0	0.1	0.5	1.0	$\mu \mathrm{A}$

\dagger At supply voltage (V_{Cc}) approaching 3 V the analog switch-on resistance becomes extremely non-linear. Therefore, for low-voltage operation, it is recommended that these devices only be used to control digital signals.

MC74VHC4066

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, ON/OFF Control Inputs: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	$\underset{\mathbf{V C}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\begin{gathered} \leq \\ 125^{\circ} \mathrm{C} \end{gathered}$	
tpLH, tphL 2	Maximum Propagation Delay, Analog Input to Analog Output (Figures 18 and 13)	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 40 \\ 30 \\ 5 \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \hline 50 \\ 40 \\ 7 \\ 7 \\ 7 \end{gathered}$	$\begin{gathered} \hline 60 \\ 50 \\ 8 \\ 8 \\ 8 \end{gathered}$	ns
$\begin{aligned} & \text { tpLZ, } \\ & \text { tpHz } \end{aligned}$	Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 14 and 15)	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 80 \\ & 60 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 80 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 14 and 15)	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 80 \\ & 45 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	ns
C	Maximum Capacitance ON/OFF Control Input Control Input $=$ GND Analog I/O Feedthrough	- - -	$\begin{gathered} \hline 10 \\ \hline \\ \hline 35 \\ 1.0 \end{gathered}$	$\begin{gathered} \hline 10 \\ \hline \\ \hline 35 \\ 1.0 \end{gathered}$	$\begin{gathered} \hline 10 \\ \hline \\ \hline 35 \\ 1.0 \end{gathered}$	pF

		Typical @ 25 ${ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
C_{PD}	Power Dissipation Capacitance (Per Switch) (Figure 17)*	15	pF

* Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2}+I_{C C} V_{C C}$.

MC74VHC4066

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{Cc}}}$	$\begin{aligned} & \text { Limit }^{*} \\ & 25^{\circ} \mathrm{C} \\ & 74 \mathrm{HC} \end{aligned}$	Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure NO TAG)	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave Adjust $f_{\text {in }}$ Voltage to Obtain 0 dBm at $\mathrm{V}_{\text {OS }}$ Increase $\mathrm{f}_{\text {in }}$ Frequency Until dB Meter Reads $-3 \mathrm{~dB}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 150 \\ & 160 \\ & 160 \end{aligned}$	MHz
-	Off-Channel Feedthrough Isolation (Figure NO TAG)	$\begin{aligned} & \text { fin } \equiv \text { Sine Wave } \\ & \text { Adjust } f_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \\ \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	-50 -50 -50 -40 -40 -40	dB
-	Feedthrough Noise, Control to Switch (Figure NO TAG)	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {in }} \leq 1 \mathrm{MHz} \text { Square Wave }\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right) \\ \text { Adjust } \mathrm{R}_{\mathrm{L}} \text { at Setup so that } \mathrm{I}_{\mathrm{S}}=0 \mathrm{~A} \\ \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{array} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \\ \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	60 130 200 30 65 100	mV PP
-	Crosstalk Between Any Two Switches (Figure 16)	$\begin{aligned} & \text { fin } \equiv \text { Sine Wave } \\ & \text { Adjust } f_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \\ \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	-70 -70 -70 -80 -80 -80	dB
THD	Total Harmonic Distortion (Figure 20)	$\begin{array}{r} \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{THD}=\mathrm{THD} \mathrm{M}_{\text {Measured }}-\mathrm{THD} \mathrm{Source} \\ \mathrm{~V}_{\text {IS }}=4.0 \mathrm{~V} \text { PP sine wave } \\ \mathrm{V}_{\text {IS }}=8.0 \mathrm{VPP} \text { sine wave } \\ \mathrm{V}_{\text {IS }}=11.0 \mathrm{VPP} \text { sine wave } \end{array}$	$\begin{gathered} 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.06 \\ & 0.04 \end{aligned}$	\%

*Guaranteed limits not tested. Determined by design and verified by qualification.

Figure 2. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$

MC74VHC4066

Figure 3. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 4. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=6.0 \mathrm{~V}$

MC74VHC4066

Figure 5. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=9.0 \mathrm{~V}$

Figure 6. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=12 \mathrm{~V}$

Figure 7. On Resistance Test Set-Up

Figure 9. Maximum On Channel Leakage Current, Test Set-Up

*Includes all probe and jig capacitance.
Figure 11. Off-Channel Feedthrough Isolation, Test Set-Up

Figure 8. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

*Includes all probe and jig capacitance.
Figure 10. Maximum On-Channel Bandwidth Test Set-Up

Figure 12. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up

MC74VHC4066

Figure 18. Propagation Delays, Analog In to Analog Out

Figure 14. Propagation Delay, ON/OFF Control to Analog Out

Figure 16. Crosstalk Between Any Two Switches, Test Set-Up

Figure 15. Propagation Delay Test Set-Up

Figure 17. Power Dissipation Capacitance Test Set-Up

*Includes all probe and jig capacitance.

Figure 20. Total Harmonic Distortion, Test Set-Up

APPLICATION INFORMATION

The ON/OFF Control pins should be at V_{CC} or GND logic levels, V_{Cc} being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to V_{CC} or GND through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked-up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages V_{Cc} and GND. The positive peak analog voltage should not exceed V_{CC}. Similarly, the negative peak analog voltage should not go below GND. In

Figure 19. Plot, Harmonic Distortion
the example below, the difference between $V_{C C}$ and GND is twelve volts. Therefore, using the configuration in Figure 21, a maximum analog signal of twelve volts peak-to-peak can be controlled.

When voltage transients above V_{CC} and/or below GND are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 22. These diodes should be small signal, fast turn-on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with Mosorbs (high current surge protectors). Mosorbs are fast turn-on devices ideally suited for precise DC protection with no inherent wear out mechanism.

Figure 22. Transient Suppressor Application

Figure 23. LSTTL/NMOS to HCMOS Interface

Figure 24. TTL/NMOS-to-CMOS Level Converter Analog Signal
Peak-to-Peak Greater than 5 V
(Also see VHC4316)

Figure 25. 4-Input Multiplexer

Figure 26. Sample/Hold Amplifier

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE

STYLE 5
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-14 NB	

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	$0{ }^{\circ}$	8°	0°	8°

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any ans.
rights of others.

ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

