

September 1195 Revised January 2001

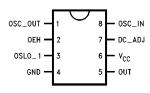
## CGS3321 • CGS3322 CMOS Crystal Clock Generators

## **General Description**

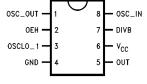
The CGS3321 and CGS3322 devices are designed for Clock Generation and Support (CGS) applications up to 110 MHz. The CGS332x series of devices are crystal controlled CMOS oscillators requiring a minimum of external components. The 332x devices provide selectable output divide ratio. The circuit is designed to operate over a wide frequency range using fundamental mode or overtone crystals.

#### **Features**

- Fairchild's CGS family of devices for high frequency clock source applications
- Crystal frequency operation range: fundamental: 10 MHz to 100 MHz typical 3rd or 5th overtone: 10 MHz to 95 MHz
- 1000V ESD protection on OCS\_IN and OSC\_OUT pins. 2000V ESD protection on all other pins
- Output current drive of 48 mA for I<sub>OL</sub>/I<sub>OH</sub>
- FACT™ CMOS output levels
- Output has high speed short circuit protection
- Intended for Pierce oscillator applications
- Hysteresis inputs to improve noise margin
- CGS3321 has duty cycle adjust
- CGS3322 has 1, 2, 4 divide ratio


## **Ordering Code:**

| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| CGS3321M     | M08A           | 8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| CGS3322M     | M08A           | 8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

## **Connection Diagrams**

## CGS3321



## CGS3322



## **Truth Table**

#### **Division Selection**

| DIVB | OEH | Divider Output |
|------|-----|----------------|
| F    | Х   | Divide-by 1    |
| 1    | 1   | Divide-by 2    |
| 0    | 1   | Divide-by 4    |

Note: Actual value of the floating DIVB input is V<sub>CC/2</sub>

FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 2001 Fairchild Semiconductor Corporation

DS011503

www.fairchildsemi.com

## **Pin Descriptions**

Note: Pin out varies for each device.

OSC\_IN Input to Oscillator Inverter. The output of the OEH crystal would be connected here.

Active HIGH 3-STATE enable pin. This pin pulls to a HIGH value when left floating and 3-STATEs the output when forced LOW. This pin

has TTL compatible input levels.

OUT OSC\_OUT Resistive Buffered Output of the Oscillator This pin is the main clock output on the device.

Inverter

(CGS3322 only) 3-Level input used to select Binary Divide-by DIVB OSCLO\_1 The Oscillator LOW pin is the ground for the

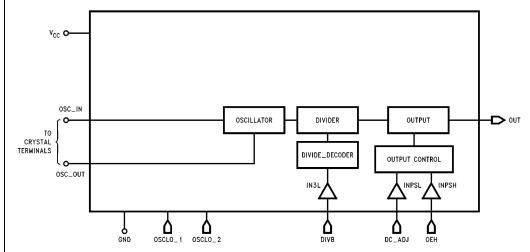
GND

value of output frequency.

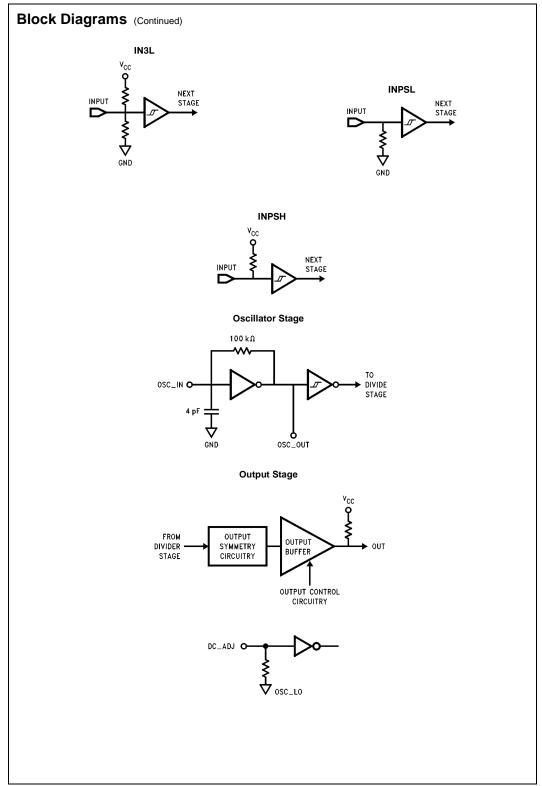
DC\_ADJ (CGS3321 only)

Active high input that controls output duty cycle. Logic high level will delay the HL transi-

tion edge approximately 0.3 ns.


The power pin for the chip.  $V_{\text{CC}}$ 

The ground pin for all sections of the circuitry except the oscillator and oscillator related


circuitry.

Note: Pin out varies for each device.

## **Block Diagrams**



Note: Pin numbers vary for each device



3

## **Absolute Maximum Ratings**(Note 1)

Supply Voltage ( $V_{CC}$ ) -0.5V to 7.0V

DC Input Voltage Diode Current ( $I_{IK}$ )  $\pm 9 \text{ mA}$ 

DC Input Voltage (V<sub>I</sub>) -0.5V to 7.0V DC Output Diode Current (I<sub>OK</sub>)  $\pm 20 \text{ mA}$ 

DC Output Voltage ( $V_O$ ) -0.5V to  $V_{CC}$  + 0.5V

DC Output Source

or Sink Current (I $_{\rm O}$ )  $\pm 70$  mA Storage Temperature (T $_{\rm STG}$ )  $-55^{\circ}{\rm C}$  to  $150^{\circ}{\rm C}$ 

Junction Temperature (T<sub>J</sub>)

SOIC 140°C/W

# Recommended Operating Conditions

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be

the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the DC and AC Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The Recommended Operating Conditions will define the conditions for actual device operation.

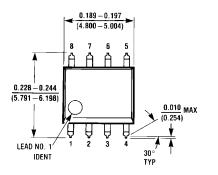
### **DC Electrical Characteristics**

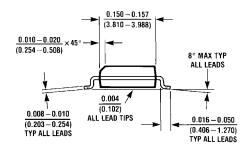
|                       |                                                          |                 | T <sub>A</sub> = +25°C |          | $T_A = -40^{\circ} \text{ C to } +85^{\circ} \text{C}$ |            |      |       |                                 |
|-----------------------|----------------------------------------------------------|-----------------|------------------------|----------|--------------------------------------------------------|------------|------|-------|---------------------------------|
| Symbol                | Parameter                                                | V <sub>CC</sub> | Тур                    | Guarante |                                                        | eed Limits |      | Units | Conditions                      |
|                       |                                                          | (V)             | тур                    | Min      | Max                                                    | Min        | Max  |       |                                 |
| V <sub>IHTTL</sub>    | Minimum HIGH Level                                       | 4.5             |                        | 2.0      |                                                        | 2.0        |      | .,    |                                 |
|                       | Input Voltage,<br>TTL Level Inputs (OEH, OEL)            | 5.5             |                        | 2.0      |                                                        | 2.0        |      | ٧     |                                 |
| V <sub>ILTTL</sub>    | Maximum LOW Level                                        | 4.5             |                        |          | 0.8                                                    |            | 0.8  | V     |                                 |
|                       | Input Voltage, TTL Level Inputs (OEH, OEL)               | 5.5             |                        |          | 0.8                                                    |            | 0.8  | V     |                                 |
| V <sub>IHCMOS</sub>   | Minimum HIGH Level                                       | 4.5             |                        | 3.15     |                                                        | 3.15       |      |       |                                 |
|                       | Input Voltage. CMOS<br>Level Inputs (DC_ADJ)             | 5.5             |                        | 3.85     |                                                        | 3.85       |      | V     |                                 |
| V <sub>ILCMOS</sub>   | Maximum LOW Level                                        | 4.5             |                        |          | 1.35                                                   |            | 1.35 |       |                                 |
|                       | Input voltage. CMOS<br>Level Inputs (DC_ADJ)             | 5.5             |                        |          | 1.65                                                   |            | 1.65 | V     |                                 |
| V <sub>IN3L_H</sub>   | Minimum Logic 1 Input                                    | 4.5             |                        | 4.05     |                                                        | 4.05       |      |       |                                 |
|                       | for Three Level Input<br>(DIVB)                          | 5.5             |                        | 4.95     |                                                        | 4.95       |      | V     |                                 |
| V <sub>IN3L_1/2</sub> | Minimum Logic 1/2 Input                                  | 4.5             |                        | 1.8      | 2.7                                                    | 1.8        | 2.7  |       |                                 |
|                       | for Three Level Input<br>(DIVB)                          | 5.5             |                        | 2.2      | 3.3                                                    | 2.2        | 3.3  | V     |                                 |
| V <sub>IN3L_L</sub>   | Maximum Logic 0 Input                                    | 4.5             |                        |          | 0.45                                                   |            | 0.45 |       |                                 |
|                       | Level Three Level Input (DIVB)                           | 5.5             |                        |          | 0.45                                                   |            | 0.45 | V     |                                 |
| V <sub>OH</sub>       | Minimum HIGH Level                                       | 4.5             | 4.49                   | 4.40     |                                                        | 4.40       |      |       | $I_{OUT} = -50\mu A$            |
|                       | Output Voltage                                           | 5.5             | 5.49                   | 5.40     |                                                        | 5.40       |      | V     |                                 |
|                       |                                                          | 4.5             |                        | 3.86     |                                                        | 3.76       |      | , v   | I <sub>OH</sub> = -48 mA        |
|                       |                                                          | 5.5             |                        | 4.86     |                                                        | 4.76       |      |       | $V_{IN} = V_{IH} \ or \ V_{IH}$ |
| V <sub>OL</sub>       | Minimum LOW Level Output Voltage                         | 4.5             | 0.001                  |          | 0.1                                                    |            | 0.1  |       | $I_{OUT} = 50\mu A$             |
|                       | Output voltage                                           | 5.5             | 0.001                  |          | 0.1                                                    |            | 0.1  | V     |                                 |
|                       |                                                          | 4.5             |                        |          | 0.44                                                   |            | 0.44 |       | I <sub>OL</sub> = +48mA         |
|                       | L 10 11 B: BIVE                                          | 5.5             |                        |          | 0.44                                                   |            | 0.44 |       | $V_{IN} = V_{IL}$ or $V_{IH}$   |
| I <sub>IHRES</sub>    | Input Current for Pins DIVB                              | 5.5             |                        | 220      | 360                                                    | 200        | 380  | μΑ    | $V_{IN} = 5.5V$                 |
| I <sub>ILRES</sub>    | Input Current for Pins DIVB                              | 5.5             |                        | -220     | -360                                                   | -200       | -380 | μΑ    | VIN = 0.0V                      |
| I <sub>IHENAB</sub>   | Input Current for<br>Enable Pin OEL                      | 5.5             |                        | 90       | 160                                                    | 85         | 175  | μΑ    | V <sub>IN</sub> = 5.5V          |
| I <sub>ILENAB</sub>   | Input Current for<br>Enable Pin OEH                      | 5.5             |                        | -90      | -160                                                   | -85        | -175 | μА    | V <sub>IN</sub> = 0.0V          |
| I <sub>IHOSC</sub>    | Input Current for OSC_IN Pin (Indicates Bias Resistance) | 5.5             |                        | 20       | 100                                                    | 20         | 125  | μА    | V <sub>IN</sub> = 5.5V          |
| I <sub>ILOSC</sub>    | Input Current for OSC_IN Pin (Indicates Bias Resistance) | 5.5             |                        | -20      | -100                                                   | -20        | -125 | μА    | V <sub>IN</sub> = 0.0V          |
| I <sub>OZH</sub>      | Output Disabled Current                                  | 4.5             |                        |          | 3.0                                                    |            | 5.0  | μА    | $V_{OUT} = V_{CC}$              |
|                       | (Output HIGH)                                            | 5.5             |                        |          | 3.0                                                    |            | 5.0  | μΛ    |                                 |
| I <sub>OZL</sub>      | Output Disabled Current                                  | 4.5             |                        |          | -140                                                   |            | -150 | μА    | V <sub>OUT</sub> = 0.0V         |
|                       | (Output LOW)                                             | 5.5             |                        |          | -170                                                   |            | -180 | μιτ   |                                 |

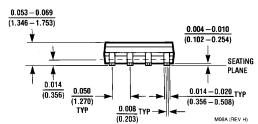
www.fairchildsemi.com

## DC Electrical Characteristics (Continued)

|                   | Parameter                                                          |                 | T <sub>A</sub> = +25°C |                   |     | $T_A = -40^{\circ} \text{ C to } +85^{\circ}\text{C}$ |            |    |                                                   |
|-------------------|--------------------------------------------------------------------|-----------------|------------------------|-------------------|-----|-------------------------------------------------------|------------|----|---------------------------------------------------|
| Symbol            |                                                                    | V <sub>CC</sub> | Тур                    | Guaranteed Limits |     |                                                       | nits Units |    | Conditions                                        |
|                   |                                                                    | (V)             | iyp                    | Min               | Max | Min                                                   | Max        |    |                                                   |
| I <sub>OLD</sub>  | Minimum Dynamic<br>Output Current                                  | 5.5             |                        | 75                |     | 75                                                    |            | mA | V <sub>OLD</sub> = 1.65V                          |
| I <sub>OHD</sub>  | Minimum Dynamic<br>Output Current                                  | 5.5             |                        | -75               |     | -75                                                   |            | mA | V <sub>OHD</sub> = 3.85V                          |
| Гсст              | Additional Maximum I <sub>CC</sub><br>per Input<br>(OEH, OEL Pins) | 5.5             |                        |                   | 1.5 |                                                       | 1.5        | mA | V <sub>IN</sub> = V <sub>CC</sub> - 2.1V          |
| I <sub>CC3L</sub> | Additional Maximum I <sub>CC</sub><br>per Input<br>(DIVB)          | 5.5             |                        |                   | 1.5 |                                                       | 1.5        | mA | DIVB, OSC_DR<br>Inputs Equal to V <sub>CC/2</sub> |


## **AC Electrical Characteristics**


Over recommended operating free air temperature range. All typical values are measured at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .


|                   |                          | v <sub>cc</sub> | т,  |                       |      |     |
|-------------------|--------------------------|-----------------|-----|-----------------------|------|-----|
| Symbol            | Parameter                | (V)             |     | $C_L = 50 \text{ pF}$ |      |     |
|                   |                          | (Note 2)        | Min | Type                  | Max  | İ   |
| f <sub>MAX</sub>  | Frequency Maximum        | 5.0             | 95  | 110                   |      | MHz |
| $t_{PZH}$         | Output HIGH Enable Time  | 5.0             | 1.0 |                       | 31.5 | ns  |
| $t_{PZL}$         | Output LOW Enable Time   | 5.0             | 1.0 |                       | 28.0 | ns  |
| t <sub>PHZ</sub>  | Output HIGH Disable Time | 5.0             | 1.0 |                       | 21.5 | ns  |
| t <sub>PLZ</sub>  | Output LOW Disable Time  | 5.0             | 1.0 |                       | 16.0 | ns  |
| t <sub>RISE</sub> | Rise/Fall Time           | 5.0             |     | 1.0                   |      | ns  |
| t <sub>FALL</sub> | 30 pF (20% to 80%)       | 3.0             |     | 1.0                   |      | 113 |

Note 2: Voltage Range 5.0 is  $5.0V \pm 0.5V$ 

## Physical Dimensions inches (millimeters) unless otherwise noted







8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com