ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Low Offset Voltage Dual Comparators

The LM393S and LM2903S are dual, independent, precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range to ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.

Features

- Wide Single–Supply Range: 2.0 Vdc to 36 Vdc
- Split–Supply Range: ±1.0 Vdc to ±18 Vdc
- Very Low Current Drain Independent of Supply Voltage: 0.4 mA
- Low Input Bias Current: 25 nA
- Low Input Offset Current: 5.0 nA
- Low Input Offset Voltage: 5.0 mV (max) with LM393S
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

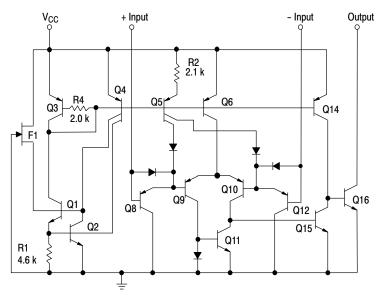
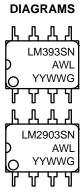


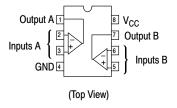
Figure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)



ON Semiconductor®

http://onsemi.com

PDIP-8 N SUFFIX CASE 626



MARKING

LMxxxx = Specific Device Code A, AL = Assembly Location

WL = Wafer Lot
Y, YY = Year
W, WW = Work Week
G or = = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed marking information and ordering and shipping information on page 7 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+36 or ±18	V
Input Differential Voltage	V_{IDR}	36	V
Input Common Mode Voltage Range (Note 1)	V _{ICR}	-0.3 to +36	V
Output Voltage	V _O	36	V
Output Short Circuit–to–Ground Output Sink Current (Note 2)	I _{SC} I _{Sink}	Continuous 20	mA
Power Dissipation @ T _A = 25°C Derate above 25°C	P _D 1/R _{θJA}	570 5.7	MW mW/°C
Operating Ambient Temperature Range LM393S LM2903S	T _A	0 to +70 -40 to +105	°C
Maximum Operating Junction Temperature	T _{J(max)}	150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. For supply voltages less than 36 V, the absolute maximum input voltage is equal to the supply voltage.

2. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause

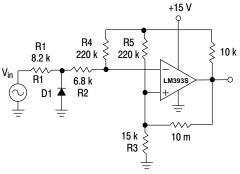
excessive heating and eventual destruction.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc}$, $T_{low} \le T_A \le T_{high}$, unless otherwise noted.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			LM393S		LM2903S				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Offset Voltage (Note 3)	V _{IO}							mV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T _A = 25°C		_	±1.0	±5.0	_	±2.0	±7.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_{low} \le T_A \le T_{high}$		_	_	±9.0	_	±9.0	±15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Offset Current	I _{IO}							nA
$ \begin{array}{ c c c c c } \hline \text{Input Bias Current (Note 4)} & I_{IB} \\ \hline T_A = 25^{\circ}C \\ \hline T_{Iow} \le T_A \le T_{high} \\ \hline \hline \text{Input Common Mode Voltage Range (Note 5)} \\ \hline T_A = 25^{\circ}C \\ \hline T_{Iow} \le T_A \le T_{high} \\ \hline \hline \text{Input Common Mode Voltage Range (Note 5)} \\ \hline T_A = 25^{\circ}C \\ \hline T_{Iow} \le T_A \le T_{high} \\ \hline \hline \text{Voltage Gain} \\ \hline \text{Voltage Gain} \\ \hline \text{RL} \ge 15 \text{ k}\Omega, V_{CC} = 15 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \text{Large Signal Response Time} \\ \hline V_{in} = TTL \ \text{Logic Swing}, V_{ref} = 1.4 \text{ Vdc} \\ \hline V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega, T_A = 25^{\circ}C \\ \hline \hline \text{Input Differential Voltage (Note 7)} \\ \hline \text{All } V_{in} \ge \text{GND or } V - \text{Supply (if used)} \\ \hline \hline \text{Output Sink Current} \\ \hline V_{in} \ge 1.0 \text{ Vdc}, V_{in+} = 0 \text{ Vdc}, V_O \le 1.5 \text{ Vdc} \ T_A = 25^{\circ}C \\ \hline \hline \text{Output Stancarton Voltage} \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} \ge 1.0 \text{ Vdc}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} \ge 1.0 \text{ Vdc}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} \ge 1.0 \text{ Vdc}, V_{in+} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \text{Output Leakage Current} \\ \hline \hline \text{V}_{in} \ge 1.0 \text{ Vdc}, V_O = 30 \text{ Vdc}, T_A = 25^{\circ}C \\ \hline \hline \ \end{tabular} $	T _A = 25°C		-	±5.0	±50	-	±5.0	±50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_{low} \le T_A \le T_{high}$		-	_	±150	-	±50	±200	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Bias Current (Note 4)	I _{IB}							nA
$ \begin{array}{ c c c c c } \hline \text{Input Common Mode Voltage Range (Note 5)} & V_{ICR} & 0 & - & V_{CC} - 1.5 & 0 & - & V_{CC} - 1.5 \\ \hline T_{Iow} \leq T_A \leq T_{high} & 0 & - & V_{CC} - 2.0 & 0 & - & V_{CC} - 2.0 \\ \hline Voltage Gain & A_{VOL} & 50 & 200 & - & 25 & 200 & - & V_{MV} \\ \hline R_L \geq 15 k\Omega, V_{CC} = 15 Vdc, T_A = 25^{\circ}C & - & - & 200 & - & - & 200 & - & ns \\ \hline Large Signal Response Time & - & - & 200 & - & - & 200 & - & ns \\ \hline V_{in} = TTL Logic Swing, V_{ref} = 1.4 Vdc & - & - & 1.0 & - & - & 1.0 & - & \mus \\ \hline V_{RL} = 5.0 Vdc, R_L = 5.1 k\Omega, T_A = 25^{\circ}C & & - & 1.0 & - & - & 1.0 & - & \mus \\ \hline Input Differential Voltage (Note 7) & V_{ID} & - & - & V_{CC} & - & - & V_{CC} & V \\ \hline All V_{in} \geq GND or V - Supply (if used) & & & & & & & & & & & & & & & & & & &$	$T_A = 25^{\circ}C$		-	25	250	-	25	250	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_{low} \le T_A \le T_{high}$		-	_	400	-	200	500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Common Mode Voltage Range (Note 5)	V _{ICR}							V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_A = 25^{\circ}C$		0	_	V _{CC} -1.5	0	_	V _{CC} -1.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_{low} \le T_A \le T_{high}$		0	_	V _{CC} -2.0	0	_	V _{CC} -2.0	
	Voltage Gain	A _{VOL}	50	200	_	25	200	-	V/mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_L \ge 15 \text{ k}\Omega, V_{CC}$ = 15 Vdc, T_A = 25°C								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Large Signal Response Time	_	-	200	_	_	200	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{in} = TTL Logic Swing, V _{ref} = 1.4 Vdc								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{RL} = 5.0 Vdc, R_L = 5.1 k Ω , T_A = 25°C								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Response Time (Note 6)	t _{TLH}	-	1.0	_	_	1.0	-	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{RL} = 5.0 Vdc, R_L = 5.1 k Ω , T_A = 25°C								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Differential Voltage (Note 7)	V_{ID}	-	_	V _{CC}	-	_	V _{CC}	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	All $V_{in} \ge GND$ or $V-$ Supply (if used)								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Sink Current	I _{Sink}	6.0	16	_	6.0	16	-	mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{in} \ge 1.0 \text{ Vdc}, V_{in+} = 0 \text{ Vdc}, V_O \le 1.5 \text{ Vdc} T_A = 25^{\circ}C$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Saturation Voltage	V _{OL}							mV
	$V_{in} \geq$ 1.0 Vdc, V_{in+} = 0, $I_{Sink} \leq$ 4.0 mA, T_A = 25°C		_	150	400	_	_	400	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T_{low} \le T_A \le T_{high}$		_	_	700	_	200	700	
$V_{in-} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_{O} = 30 \text{ Vdc}, $ $T_{low} \le T_{A} \le T_{high}$ $ 1000$ $ 1000$	Output Leakage Current	l _{OL}							nA
$T_{low} \le T_A \le T_{high}$ 1000 1000	V_{in-} = 0 V, V_{in+} \geq 1.0 Vdc, V_{O} = 5.0 Vdc, T_{A} = 25°C		_	0.1	_	_	0.1	-	
	V_{in-} = 0 V, V_{in+} \geq 1.0 Vdc, V_{O} = 30 Vdc, $T_{low} \leq T_{A} \leq T_{high}$		_	_	1000	_	_	1000	
Supply Current I _{CC} mA	Supply Current	Icc							mA
$R_L = \infty$ Both Comparators, $T_A = 25^{\circ}C$	11.7		_	0.6	1.0	_	0.6	1.0	
$R_L = \infty$ Both Comparators, $V_{CC} = 30 \text{ V}$ $-$ 0.75 2.5 $-$ 0.75 2.5			_			_			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

LM393S $T_{low} = 0$ °C, $T_{high} = +70$ °C LM2903S $T_{low} = -40$ °C, $T_{high} = +105$ °C


- 3. At output switch point, $V_O \simeq 1.4$ Vdc, $R_S = 0$ Ω with V_{CC} from 5.0 Vdc to 30 Vdc, and over the full input common mode range (0 V to $V_{CC} = -1.5 \text{ V}$).
- 4. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.
- 5. Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is V_{CC} –1.5 V.
- 6. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.
- 7. The comparator will exhibit proper output state if one of the inputs becomes greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation, input resistors <10 k Ω should be used.

The addition of positive feedback ($<10\,\mathrm{mV}$) is also recommended. It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.

D1 prevents input from going negative by more than 0.6 V.

$$R1 + R2 = R3$$

$$R3 \le \frac{R5}{10} \text{ for small error in zero crossing.}$$

Figure 2. Zero Crossing Detector (Single Supply)

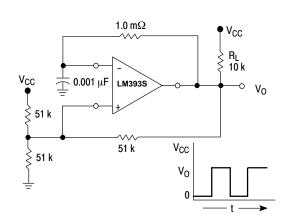
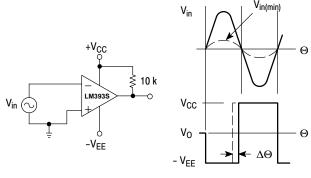



Figure 4. Free-Running Square-Wave Oscillator

 $V_{in(min)} \approx 0.4 \text{ V}$ peak for 1% phase distortion ($\Delta\Theta$).

Figure 3. Zero Crossing Detector (Split Supply)

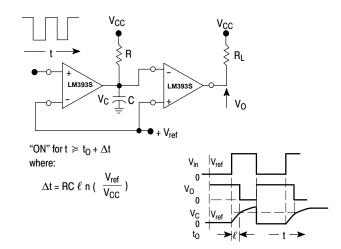


Figure 5. Time Delay Generator

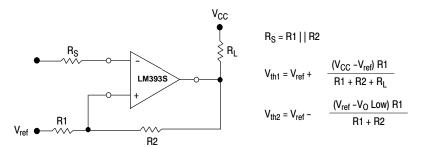
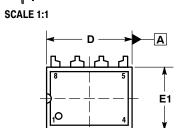


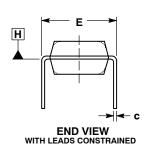
Figure 6. Comparator with Hysteresis

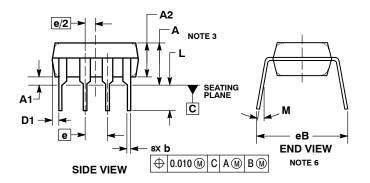
ORDERING INFORMATION


Device	Operating Temperature Range	Package	Shipping [†]
LM393SNG	0°C to +70°C	PDIP-8 (Pb-Free)	50 Units / Rail
LM2903SNG	-40°C to +105°C	PDIP-8 (Pb-Free)	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PDIP-8 CASE 626-05 ISSUE P


DATE 22 APR 2015


TOP VIEW

b2

В

NOTE 5

PIN 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. V_{CC}

STYLE 1:

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
- AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- 6. DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE
- LEADS UNCONSTRAINED.

 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
- PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54 BSC	
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42420B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP-8		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and severally, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond