Analog Multiplexers/ Demultiplexers High-Performance Silicon-Gate CMOS

The MC54/74HC4051, MC74HC4052 and MC54/74HC4053 utilize sili-con-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/ demultiplexers control analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}).
The HC4051, HC4052 and HC4053 are identical in pinout to the metal-gate MC14051B, MC14052B and MC14053B. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.
The Channel-Select and Enable inputs are compatible with standard CMOS outputs; with pullup resistors they are compatible with LSTTL outputs.
These devices have been designed so that the ON resistance ($R_{0 n}$) is more linear over input voltage than $R_{\text {on }}$ of metal-gate CMOS analog switches.
For multiplexers/demultiplexers with channel-select latches, see HC4351, HC4352 and HC4353.

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Analog Power Supply Range ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=2.0$ to 12.0 V
- Digital (Control) Power Supply Range (VCC - GND) $=2.0$ to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal-Gate Counterparts
- Low Noise
- In Compliance With the Requirements of JEDEC Standard No. 7A
- Chip Complexity: HC4051 - 184 FETs or 46 Equivalent Gates

HC4052 - 168 FETs or 42 Equivalent Gates
HC4053 - 156 FETs or 39 Equivalent Gates

LOGIC DIAGRAM

MC54/74HC4051
Single-Pole, 8-Position Plus Common Off

MOTOROLA

FUNCTION TABLE - MC74HC4052

Control Inputs				
	Select			
Enable	B	A	ON Channels	
L	L	L	Y0	X0
L	L	H	Y1	X1
L	H	L	Y2	X2
L	H	H	Y3	X3
H	X	X	NONE	

X Don't Care

Pinout: MC74HC4052 (Top View)

FUNCTION TABLE - MC54/74HC4053

Control Inputs						
		Select				
Enable	C	B	A	ON Channels		
L	L	L	L	Z0	YO	X0
L	L	L	H	Z0	Y0	X1
L	L	H	L	Z0	Y1	X0
L	L	H	H	Z0	Y1	X1
L	H	L	L	Z1	Y0	X0
L	H	L	H	Z1	Y0	X1
L	H	H	L	Z1	Y1	X0
L	H	H	H	Z1	Y1	X1
H	X	X	X		NONE	

X $=$ Don't Care

Pinout: MC54/74HC4053 (Top View)

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage $\begin{gathered}\text { (Referenced to GND) } \\ \text { (Referenced to } V_{E E} \text {) }\end{gathered}$	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to }+14.0 \end{gathered}$	V
$\mathrm{V}_{\text {EE }}$	Negative DC Supply Voltage (Referenced to GND)	-7.0 to +5.0	V
VIS	Analog Input Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}-0.5 \text { to } \\ \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$	V
$\mathrm{V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
1	DC Current, Into or Out of Any Pin	± 25	mA
PD	Power Dissipation in Still Air, Plastic or Ceramic DIP \dagger SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to + 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC or TSSOP Package Ceramic DIP	$\begin{aligned} & 260 \\ & 300 \end{aligned}$	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.
\dagger Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
Ceramic DIP: $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 100° to $125^{\circ} \mathrm{C}$
SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage $\begin{gathered}\text { (Referenced to GND) } \\ \text { (Referenced to } \mathrm{V}_{\mathrm{EE}} \text {) }\end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 12.0 \end{gathered}$	V
$\mathrm{V}_{\text {EE }}$	Negative DC Supply Voltage, Output (Referenced to GND)	-6.0	GND	V
VIS	Analog Input Voltage	$V_{\text {EE }}$	V_{CC}	V
$\mathrm{V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)	GND	$V_{\text {CC }}$	V
$\mathrm{V}_{10}{ }^{\text {* }}$	Static or Dynamic Voltage Across Switch		1.2	V
T_{A}	Operating Temperature Range, All Package Types	-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise/Fall Time $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ (Channel Select or Enable Inputs) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

* For voltage drops across switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted

Symbol	Parameter	Condition	V_{V}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs	Ron $=$ Per Spec	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 3.15 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 3.15 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 3.15 \\ & 4.20 \end{aligned}$	V
VIL	Maximum Low-Level Input Voltage, Channel-Select or Enable Inputs	Ron $=$ Per Spec	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	V
1 in	Maximum Input Leakage Current, Channel-Select or Enable Inputs	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{~V} \end{aligned}$	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (per Package)	Channel Select, Enable and $V_{I S}=V_{C C}$ or $G N D ; \quad V_{E E}=G N D$ $V_{I O}=0 V \quad V_{E E}=-6.0$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).
DC CHARACTERISTICS - Analog Section

Symbol	Parameter		Condition	VCC	V_{EE}	Guaranteed Limit			Unit	
			-55 to $25^{\circ} \mathrm{C}$			$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$			
$\mathrm{R}_{\text {on }}$	Maximum "ON" Resistance			$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}} \text { to } \\ & \mathrm{V}_{\mathrm{EE}} ; \mathrm{IIS} \leq 2.0 \mathrm{~mA} \\ & \text { (Figures } 1,2 \text {) } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ -4.5 \\ -6.0 \end{gathered}$	$\begin{aligned} & \hline 190 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 240 \\ & 150 \\ & 125 \end{aligned}$	$\begin{aligned} & 280 \\ & 170 \\ & 140 \end{aligned}$	Ω
			$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or V_{EE} (Endpoints); IS $\leq 2.0 \mathrm{~mA}$ (Figures 1, 2)	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -4.5 \\ -6.0 \end{gathered}$	$\begin{gathered} 150 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \hline 190 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 230 \\ & 140 \\ & 115 \end{aligned}$		
$\Delta \mathrm{R}_{\text {on }}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package		$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) ; \\ & \mathrm{IS} \leq 2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ -4.5 \\ -6.0 \end{gathered}$	$\begin{aligned} & 30 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 18 \\ & 14 \end{aligned}$	Ω	
$l_{\text {off }}$	Maximum Off-Channel Leakage Current, Any One Channel		$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \\ & \text { Switch Off (Figure 3) } \end{aligned}$	6.0	-6.0	0.1	0.5	1.0	$\mu \mathrm{A}$	
	Maximum Off-Channel Leakage Current, Common Channel	$\begin{aligned} & \text { HC4051 } \\ & \text { HC4052 } \\ & \text { HC4053 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH; }} ; \\ & \mathrm{V}_{\text {IO }}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \\ & \text { Switch Off (Figure 4) } \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & -6.0 \\ & -6.0 \\ & -6.0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \\ & 2.0 \end{aligned}$		
Ion	Maximum On-Channel Leakage Current, Channel-to-Channel	HC4051 HC4052 HC4053	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}; Switch-to-Switch = $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$; (Figure 5)	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & -6.0 \\ & -6.0 \\ & -6.0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	

AC CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	v_{CC}	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
tpLH, tpHL	Maximum Propagation Delay, Channel-Select to Analog Output (Figure 9)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 370 \\ 74 \\ 63 \end{gathered}$	$\begin{gathered} \hline 465 \\ 93 \\ 79 \end{gathered}$	$\begin{gathered} 550 \\ 110 \\ 94 \end{gathered}$	ns
$\overline{\text { tPLH, }}$ tPHL	Maximum Propagation Delay, Analog Input to Analog Output (Figure 10)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 90 \\ & 18 \\ & 15 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLZ, } \\ & \text { tPHZ } \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figure 11)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 290 \\ 58 \\ 49 \end{gathered}$	$\begin{gathered} 364 \\ 73 \\ 62 \end{gathered}$	$\begin{gathered} 430 \\ 86 \\ 73 \end{gathered}$	ns
$\begin{aligned} & \hline \text { tPZL, } \\ & \text { tPZH } \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figure 11)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 345 \\ 69 \\ 59 \end{gathered}$	$\begin{gathered} 435 \\ 87 \\ 74 \end{gathered}$	$\begin{aligned} & 515 \\ & 103 \\ & 87 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance, Channel-Select or Enable Inputs		10	10	10	pF
$\mathrm{Cl}_{\text {/ }}$	Maximum Capacitance Analog I/O (All Switches Off) Common O/l: HC4051 HC4052 HC4053 Feedthrough		35	35	35	pF
			$\begin{aligned} & \hline 130 \\ & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 130 \\ & 80 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 130 \\ 80 \\ 50 \end{gathered}$	
			1.0	1.0	1.0	

NOTE: For propagation delays with loads other than 50 pF , and information on typical parametric values, see Chapter 2 of the Motorola HighSpeed CMOS Data Book (DL129/D).

CPD	Power Dissipation Capacitance (Figure 13)*	HC4051 HC4052 HC4053	Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$	pF
			45	
			80	
			45	

* Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2}+I_{C C} V_{C C}$. For load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{V}} \mathrm{C}$	$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{EE}}}$	Limit ${ }^{*}$			Unit
						$25^{\circ} \mathrm{C}$		
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 6)	$f_{\text {in }}=1 \mathrm{MHz}$ Sine Wave; Adjust $f_{\text {in }}$ Voltage to Obtain OdBm at V_{OS}; Increase f_{in} Frequency Until dB Meter Reads -3dB;$R_{L}=50 \Omega, C_{L}=10 p F$			'51	'52	'53	MHz
			2.25	-2.25	80	95	120	
			4.50	-4.50	80	95	120	
			6.00	-6.00	80	95	120	
-	Off-Channel Feedthrough Isolation (Figure 7)	$\mathrm{f}_{\text {in }}=$ Sine Wave; Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain	2.25	-2.25		-50		dB
		0 dBm at $\mathrm{V}_{\text {IS }}$	4.50	-4.50		-50		
		$\mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6.00	-6.00		-50		
			2.25	-2.25		-40		
			4.50	-4.50		-40		
		$\mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	6.00	-6.00		-40		
-	Feedthrough Noise. Channel-Select Input to Common I/O (Figure 8)							$\mathrm{mV}_{\mathrm{PP}}$
		Adjust R_{L} at Setup so that $I_{S}=0 A$;	4.50	-4.50		105		
		Enable $=$ GND $\quad R_{L}=600 \Omega, C_{L}=50 \mathrm{pF}$	6.00	-6.00		135		
			2.25	-2.25		35		
			4.50	-4.50		145		
		$R_{L}=10 k \Omega, C_{L}=10 \mathrm{pF}$	6.00	-6.00		190		
-	Crosstalk Between Any Two Switches (Figure 12) (Test does not apply to HC4051)	$\mathrm{f}_{\text {in }}=$ Sine Wave; Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain	2.25	-2.25		-50		dB
		0 dBm at $\mathrm{V}_{\text {IS }}$	4.50	-4.50		-50		
		$\mathrm{fin}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, C_{L}=50 \mathrm{pF}$	6.00	-6.00		-50		
			2.25	-2.25		-60		
			4.50	-4.50		-60		
		$\mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	6.00	-6.00		-60		
THD	Total Harmonic Distortion (Figure 14)	$f_{\text {in }}=1 \mathrm{kHz}, R_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=50 \mathrm{pF}$ THD $=$ THD measured - THD $_{\text {source }}$ $\mathrm{V}_{\text {IS }}=4.0 \mathrm{~V}$ PP sine wave $\mathrm{V}_{\text {IS }}=8.0 \mathrm{~V}$ PP sine wave $\mathrm{V}_{\text {IS }}=11.0 \mathrm{~V}_{\text {PP }}$ sine wave						\%
			2.25	-2.25		0.10		
			4.50	-4.50		0.08		
			6.00	-6.00		0.05		

* Limits not tested. Determined by design and verified by qualification.

VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1a. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0 \mathrm{~V}$

Figure 1c. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$

Figure 1e. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=12.0 \mathrm{~V}$

VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1b. Typical On Resistance, $\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$

V_{IS}, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1d. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$

Figure 2. On Resistance Test Set-Up

Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

Figure 5. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

Figure 7. Off Channel Feedthrough Isolation, Test Set-Up

Figure 4. Maximum Off Channel Leakage Current, Common Channel, Test Set-Up

Figure 6. Maximum On Channel Bandwidth, Test Set-Up

Figure 8. Feedthrough Noise, Channel Select to Common Out, Test Set-Up

Figure 9a. Propagation Delays, Channel Select to Analog Out

Figure 10a. Propagation Delays, Analog In to Analog Out

Figure 11a. Propagation Delays, Enable to Analog Out

Figure 9b. Propagation Delay, Test Set-Up Channel Select to Analog Out

*Includes all probe and jig capacitance
Figure 10b. Propagation Delay, Test Set-Up Analog In to Analog Out

Figure 11b. Propagation Delay, Test Set-Up Enable to Analog Out

Figure 12. Crosstalk Between Any Two Switches, Test Set-Up

Figure 14a. Total Harmonic Distortion, Test Set-Up

Figure 13. Power Dissipation Capacitance, Test Set-Up

Figure 14b. Plot, Harmonic Distortion

APPLICATIONS INFORMATION

The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}=\text { logic high } \\
\mathrm{GND}=0 \mathrm{~V}=\text { logic low }
\end{gathered}
$$

The maximum analog voltage swings are determined by the supply voltages V_{CC} and V_{EE}. The positive peak analog voltage should not exceed V_{CC}. Similarly, the negative peak analog voltage should not go below V_{EE}. In this example, the difference between V_{CC} and V_{EE} is ten volts. Therefore, using the configuration of Figure 15, a maximum analog signal of ten volts peak-to-peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and outputs to
$V_{C C}$ or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.
Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2 \text { to } 6 \text { volts } \\
\mathrm{VEE}_{\mathrm{EE}}-\mathrm{GND}=0 \text { to }-6 \text { volts } \\
\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2 \text { to } 12 \text { volts } \\
\text { and } \mathrm{V}_{\mathrm{EE}} \leq \mathrm{GND}
\end{gathered}
$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes (D_{x}) are recommended as shown in Figure 16. These diodes should be able to absorb the maximum anticipated current surges during clipping.

Figure 15. Application Example

a. Using Pull-Up Resistors

Figure 16. External Germanium or Schottky Clipping Diodes

b. Using HCT Interface

Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs

Figure 18. Function Diagram, HC4051

Figure 19. Function Diagram, HC4052

Figure 20. Function Diagram, HC4053

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part Motorola and $\boldsymbol{\Delta t}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com-TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

