

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

GTLP16616 17-Bit TTL/GTLP Bus Transceiver with Buffered Clock

FAIRCHILD

SEMICONDUCTOR

GTLP16616 17-Bit TTL/GTLP Bus Transceiver with Buffered Clock

General Description

The GTLP16616 is a 17-bit registered bus transceiver that provides TTL to GTLP signal level translation. It allows for transparent, latched and clocked modes of data flow and provides a buffered GTLP (CLKOUT) clock output from the TTL CLKAB. The device provides a high speed interface between cards operating at TTL logic levels and a back-plane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus setting time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

Features

- Bidirectional interface between GTLP and TTL logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced CMOS technology
- Bushold data inputs on the A port eliminates the need
- for external pull-up resistors on unused inputs.

 Power up/down and power off high impedance for live insertion
- 5 V tolerant inputs and outputs on the LVTTL ports
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- D-type flip-flop, latch and transparent data paths
- A Port source/sink –32 mA/+32 mA
- GTLP Buffered CLKAB signal available (CLKOUT)

Ordering Code:

Order Number	Package Number	Package Description			
GTLP16616MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118 0.300" Wide			
GTLP16616MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Devices also available	Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.				

© 2000 Fairchild Semiconductor Corporation DS500017

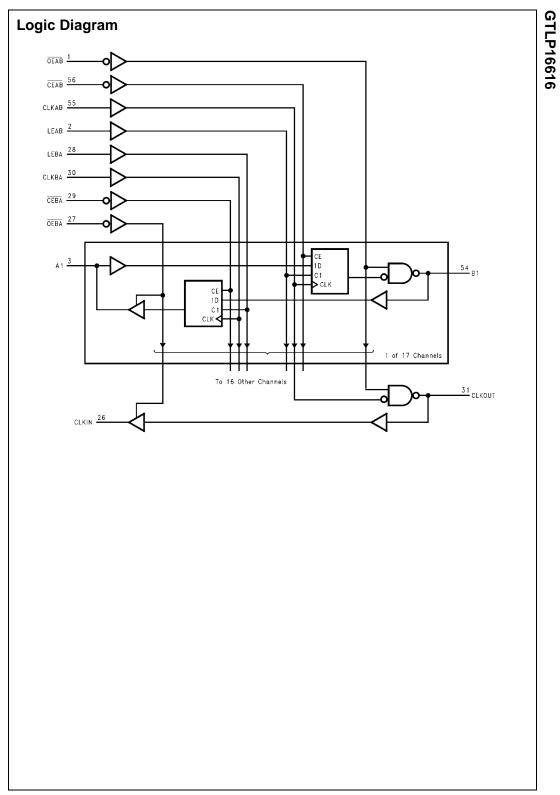
Pin Names	Description
OEAB	A-to-B Output Enable (Active LOW)
OEBA	B-to-A Output Enable (Active LOW)
CEAB	A-to-B Clock Enable (Active LOW)
CEBA	B-to-A Clock Enable (Active LOW)
LEAB	A-to-B Latch Enable (Transparent HIGH)
LEBA	B-to-A Latch Enable (Transparent HIGH)
V _{REF}	GTLP Reference Voltage
CLKAB	A-to-B Clock
CLKBA	B-to-A Clock
A1-A17	A-to-B Data Inputs or B-to-A 3-STATE Outputs
B1-B17	B-to-A Data Inputs or
	A-to-B Open Drain Outputs
CLKIN	B-to-A Buffered Clock Output
CLKOUT	GTLP Buffered Clock Output of CLKAB

Connection D	iagram	
OEAB -	1	56 - CEAB
LEAB —	2	55 — CLKAB
A1 —	3	54 B1
GND —	4	53 — GND
A2 —	5	52 B2
A3 —	6	51 — B3
V _{CC} (3.3V) —	7	50 — V _{CCQ} (5.0V)
A4 —	8	49 B4
A5 —	9	48 B5
A6 —	10	47 B 6
gnd _q * —	11	46 — GND
A7 —	12	45 B 7
A8 —	13	44 - B8
A9 —	14	43 B 9
A10 —	15	42 B10
A11 —	16	41 B11
A12 -	17	40 B12
GND —	18	39 — GND
A13 —	19	38 B13
A14 —	20	37 B14
A15 —	21	36 B15
V _{CC} (3.3V) -	22	35 - V _{REF}
A16 -	23	34 B16
A17 —	24	33 B17
GND -	25	32 GND
CLKIN -	26	31 CLKOUT
OEBA -	27	30 CLKBA
LEBA —	28	29 — CEBA

Functional Description

The GTLP16616 is a 17 bit registered transceiver containing D-type flip-flop, latch and transparent modes of operation for the data <u>path</u> and a <u>GTLP</u> translation of the CLKAB signal (CLKOUT). Data flow in each direction is controlled by the clock <u>enables</u> (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA) and <u>output</u> enables (OEAB and OEBA). The clock enables (CEAB and CEBA) enable all 17 bits. The output enables (OEAB and OEBA) control both the 17 bits of data and the CLKOUT/CLKIN buffered clock path.

For A-to-B data flow, when CEAB is LOW, the device operates on the LOW-to-HIGH transition of CLKAB for the flip-flop and on the HIGH-to-LOW transition of LEAB for the latch path. That is, if CEAB is LOW and LEAB is LOW the A data is latched regardless as to the state of CLKAB (HIGH or LOW) and if LEAB is HIGH the device is in transparent mode. When OEAB is LOW the <u>outputs</u> are active. When OEAB is HIGH the outputs are HIGH impedance. The data flow of B-to-A is similar except that CEBA, OEBA, LEBA and CLKBA are used.


Truth Table

(Note 1)

	Inputs				Output	Mode
CEAB	OEAB	LEAB	CLKAB	Α	В	
Х	Н	Х	Х	Х	Z	Latched
L	L	L	н	Х	B ₀ (Note 2)	storage
L	L	L	L	х	B ₀ (Note 3)	of A data
Х	L	Н	Х	L	L	Transparent
Х	L	н	Х	н	н	
L	L	L	\uparrow	L	L	Clocked storage
L	L	L	\uparrow	н	н	of A data
Н	L	L	Х	Х	B ₀ (Note 3)	Clock inhibit

Note 1: A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA, and CEBA.

Note 2: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH prior to LEAB going LOW. Note 3: Output level before the indicated steady-state input conditions were established.

3

Absolute Maximum Ratings(Note 4)

	-	~
Supply Voltage (V _{CC})	-0.5V to +7.0V	Con
DC Input Voltage (V _I)	-0.5V to +7.0V	Supply
DC Output Voltage (V _O)		V _{CC}
Outputs 3-STATE	-0.5V to +7.0V	V _{CC}
Outputs Active (Note 5)	–0.5V to V _{CC} + 0.5V	Bus Te
DC Output Sink Current into		Input \
A Port I _{OL}	64 mA	on A
DC Output Source Current from		HIGH
A Port I _{OH}	-64 mA	A Po
DC Output Sink Current		LOW L
into B Port in the LOW State, I_{OL}	80 mA	A Po
DC Input Diode Current (IIK)		B Po
V ₁ < 0V	–50 mA	Opera
DC Output Diode Current (I _{OK})		Note 4: 1
V _O < 0V	–50 mA	the safety operated
$V_{O} > V_{CC}$	+50 mA	Character The "Rec
ESD Rating	>2000V	for actual
Storage Temperature (T _{STG})	-65°C to +150°C	Note 5: I _C

Recommended Operating Conditions (Note 6)

ly Voltage V_{CC} 3.15V to 3.45V С 4.75V to 5.25V CQ Termination Voltage (V_{TT}) GTLP 1.35V to 1.65V Voltage (V_I) A Port and Control Pins 0.0V to 5.5V Level Output Current (I_{OH}) –32 mA ort Level Output Current (I_{OL}) ort +32 mA +34 mA Port ating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, $V_{\mbox{\scriptsize REF}}$ = 1.0V (unless otherwise noted).

	Symbol	Test Conditi	ons	Min	Typ (Note 7)	Мах	Units	
VIH	B Port			V _{REF} +0.1		V _{TT}	V	
	Others			2.0			V	
VIL	B Port			0.0		V _{REF} -0.1	V	
	Others					0.8	V	
V _{REF}	GTLP				1.0		V	
	GTL				0.8		V	
VIK		V _{CC} = 3.15V,	I _I = -18 mA			-1.2	V	
		$V_{CCQ} = 4.75V$						
V _{OH}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	I _{OH} = -100 μA	V _{CC} -0.2				
		V _{CC} = 3.15V	I _{OH} = -8 mA	2.4			V	
		$V_{CCQ} = 4.75V$	$I_{OH} = -32 \text{ mA}$	2.0				
V _{OL}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	$I_{OL} = 100 \ \mu A$			0.2		
		V _{CC} = 3.15V	$I_{OL} = 32 \text{ mA}$			0.5	V	
		$V_{CCQ} = 4.75V$						
	B Port	V _{CC} = 3.15V V _{CCQ} = 4.75V	I _{OL} = 34 mA			0.65	V	
կ	Control Pins	V _{CC} , V _{CCQ} = 0 or Max	$V_I = 5.5V \text{ or } 0V$			±10	μA	
	A Port	V _{CC} = 3.45V	$V_{I} = 5.5V$			20		
		$V_{CCQ} = 5.25V$	$V_I = V_{CC}$			1	μΑ	
			$V_I = 0$			-30		
	B Port	V _{CC} = 3.45V	$V_I = V_{CC}$			5	A	
		$V_{CCQ} = 5.25V$	$V_I = 0$			-5	μA	
I _{OFF}	A Port and Control Pins	$V_{CC} = V_{CCQ} = 0$	V_I or $V_O = 0$ to 4.5V			100	μA	
I _{I (hold)}	A Port	V _{CC} = 3.15V,	V _I = 0.8V	75				
		$V_{CCQ} = 4.75V$	$V_{I} = 2.0V$	-20			μA	
I _{OZH}	A Port	V _{CC} = 3.45V,	$V_0 = 3.45V$			1	μA	
	B Port	V _{CCQ} = 5.25V	V _O = 1.5V			5	μА	
I _{OZL}	A Port	V _{CC} = 3.45V,	$V_0 = 0$			-20		
	B Port	V _{CCQ} = 5.25V	V _O = 0.65V			-10	μA	

	Symbol	Test Condition	ons	Min	Typ (Note 7)	Max	Units
Iccq	A or B	V _{CC} = 3.45V,	Outputs HIGH		30	40	
(V _{CCQ})	Ports	$V_{CCQ} = 5.25V,$ $I_{O} = 0,$	Outputs LOW		30	40	mA
		$V_I = V_{CCQ}$ or GND	Outputs Disabled		30	40	1
I _{CC}	A or B	$V_{CC} = 3.45$ V, $V_{CCQ} = 5.25$ V, $I_{O} = 0$,	Outputs HIGH		0	1	
(V _{CC})	Ports		Outputs LOW		0	1	mA
		$V_I = V_{CC}$ or GND	Outputs Disabled		0	1	1
ΔI _{CC} (Note 9)	A Port and Control Pins	$V_{CC} = 3.45V,$ $V_{CC} = 5.25V,$ A or Control Inputs at	One Input at 2.7V		0	1	mA
CIN	Control Pins	V _{CC} or GND	$V_{I} = V_{CCO}$ or 0		8		
C _{I/O}	A Port		$V_{I} = V_{CCQ} \text{ or } 0$		9		pF
C _{I/O}	B Port		$V_{I} = V_{CCQ} \text{ or } 0$		6		pi

Note 7: All typical values are at V_{CC} = 3.3V, V_{CCQ} = 5.0V, and T_A = 25°C.

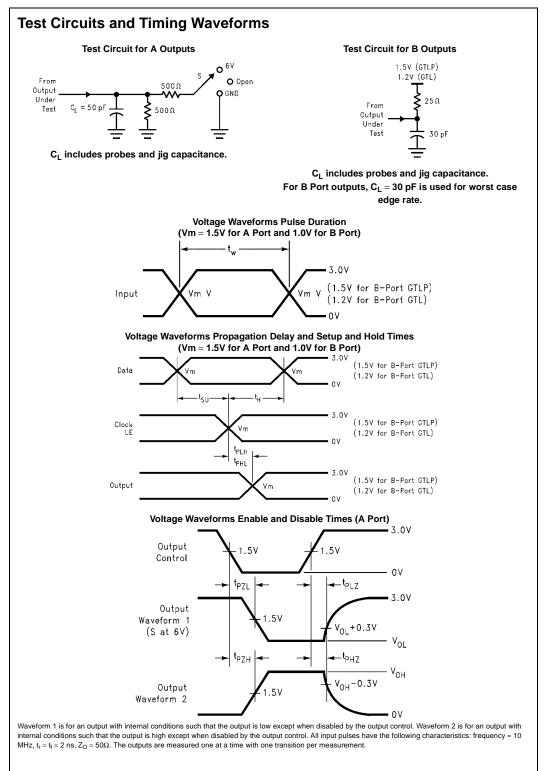
Note 8: For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

Note 9: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

AC Operating Requirements

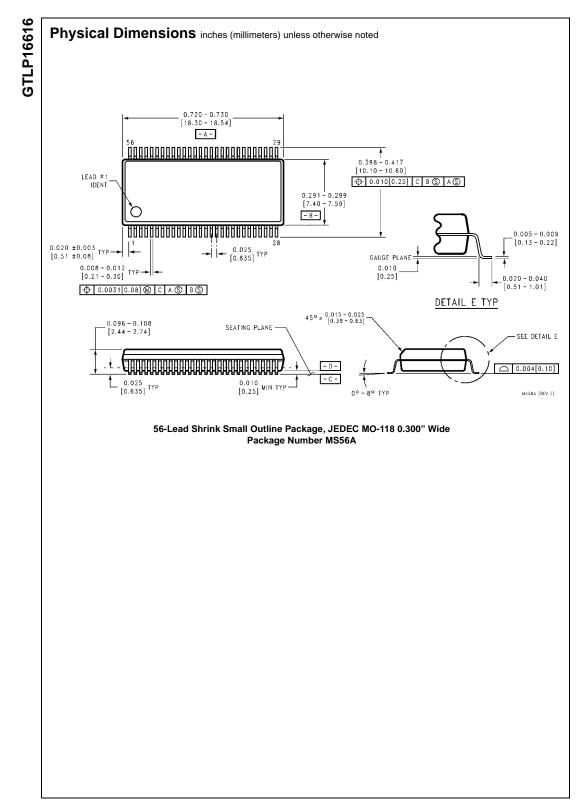
Over recommended ranges of supply voltage and operating free-air temperature, V_{REF} = 1.0V (unless otherwise noted).

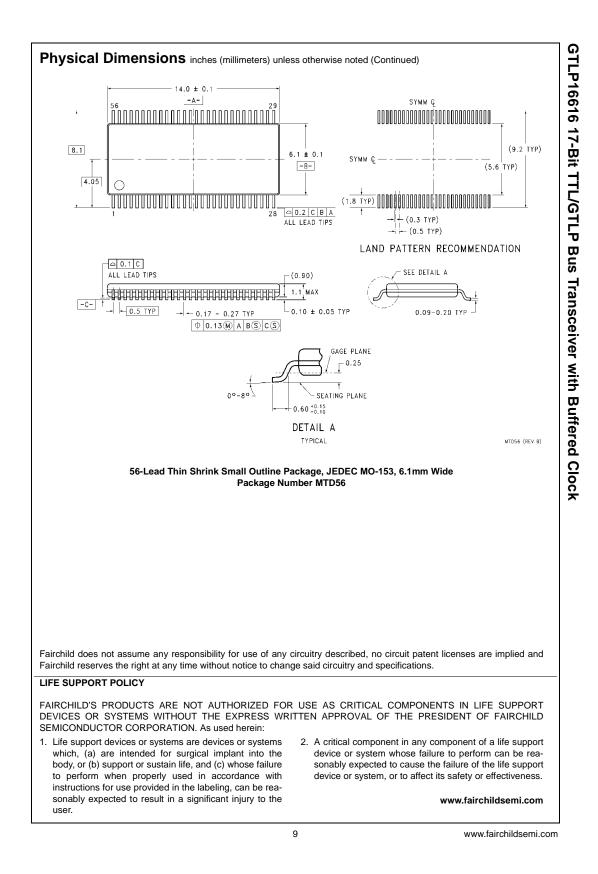
Symbol			Max	Unit
Maximum Clock Frequency		175		MHz
Pulse Duration	LEAB or LEBA HIGH	3.0		
	CLKAB or CLKBA HIGH or LOW	3.2		ns
Setup Time	A before CLKAB↑	0.5		
	B before CLKBA↑	3.1		
	A before LEAB↓	1.3		1
	B before LEBA↓	3.7		ns
	CEAB before CLKAB↑	0.7		Ţ
	CEBA before CLKBA↑	1.0		1
Hold Time	A after CLKAB↑	1.5		
	B after CLKBA↑	0.0		
	A after LEAB↓	0.5		1
	B after LEBA↓	0.0		ns
	CEAB after CLKAB↑	1.5]
	CEBA after CLKBA1	1.7		1
	Maximum Clock Frequency Pulse Duration Setup Time	Pulse Duration LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW Setup Time A before CLKBA [↑] B before CLKBA [↑] A before CLKBA [↑] B before LEAB↓ CEAB before CLKBA [↑] B before CLKBA [↑] A before CLKBA [↑] Hold Time A after CLKBA [↑] B after CLKBA [↑] A after CLKBA [↑] B after CLKBA [↑] A after LEAB↓ B after CLKBA [↑] A after LEAB↓ B after LEAB↓ B after CLKAB [↑]	Maximum Clock Frequency 175 Pulse Duration LEAB or LEBA HIGH 3.0 CLKAB or CLKBA FIGH or LOW 3.2 Setup Time A before CLKAB↑ 0.5 B before CLKBA↑ 3.1 A before LEAB↓ 1.3 B before LEBA↓ 3.7 CEAB before CLKBA↑ 0.7 CEAB before CLKBA↑ 1.0 Hold Time A after CLKBA↑ 0.0 A after LEAB↓ 0.5 B after LEAB↓ 0.5 B after CLKAB↑ 1.5 B after LEAB↓ 0.0 CEAB after CLKAB↑ 1.5	Maximum Clock Frequency 175 Pulse Duration LEAB or LEBA HIGH 3.0 CLKAB or CLKBA HIGH or LOW 3.2 Setup Time A before CLKBA↑ 0.5 B before CLKBA↑ 3.1 A before LEAB↓ 1.3 B before LEBA↓ 3.7 CEAB before CLKBA↑ 0.7 CEBA before CLKBA↑ 1.0 Hold Time A after CLKAB↑ 0.0 A after LEAB↓ 0.5 B after LEBA↓ 0.5


AC Electrical Characteristics

Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted).

Symbol	From	То	Min	Тур	Max	Unit
	(Input)	(Output)		(Note 10)		
t _{PLH}	A	В	1.0	4.3	6.5	ns
t _{PHL}			1.0	5.0	8.2	115
t _{PLH}	LEAB	В	1.8	4.5	6.7	ns
t _{PHL}			1.5	5.3	8.7	113
t _{PLH}	CLKAB	В	1.8	4.6	6.7	ns
t _{PHL}			1.5	5.4	8.7	113
t _{PLH}	CLKAB	CLKOUT	3.0	6.2	10.0	ns
t _{PHL}			3.0	5.7	10.0	
t _{PLH}	OEAB	B or CLKOUT	1.6	4.4	6.3	
t _{PHL}			1.3	6.1	9.8	ns
t _{SKEW}	B (Note 11)	CLKOUT	0		2	ns
t _{RISE}	Transition time, B outputs (20% to 80%)			2.6		
t _{FALL}	Transition time, B or	utputs (20% to 80%)		2.6		ns
t _{PLH}	В	Α	2.0	5.6	8.2	ns
t _{PHL}			1.4	5.0	7.2	113
t _{PLH}	LEBA	Α	2.1	4.2	6.3	ns
t _{PHL}			1.9	3.3	5.0	113
t _{PLH}	CLKBA	Α	2.3	4.4	6.8	ns
t _{PHL}			2.1	3.5	5.2	113
t _{PLH}	CLKOUT	CLKIN	3.0	6.0	10.0	ns
t _{PHL}			3.0	6.4	10.0	113
t _{PZH} , t _{PZL}	OEBA	A or CLKIN	1.5	5.0	6.4	
t _{PHZ} , t _{PLZ}			1.4	3.9	8.0	ns


Note 10: All typical values are at V_{CC} = 3.3V, V_{CCQ} = 5.0V, and T_A = 25^{\circ}C.


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delays for the CLKOUT pin and any B output transition when measured with reference to CLKAB[↑]. This guarantees the relationship between B output data and CLKOUT such that data is coincident or ahead of CLKOUT. This specification is guaranteed but not tested.

7

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.