LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904

Single Supply Dual Operational Amplifiers

Utilizing the circuit designs perfected for Quad Operational Amplifiers, these dual operational amplifiers feature low power drain, a common mode input voltage range extending to ground $/ \mathrm{V}_{\mathrm{EE}}$, and single supply or split supply operation. The LM358 series is equivalent to one-half of an LM324.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 32 V , with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

Features

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation
- ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation
- Pb-Free Packages are Available
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 11 of this data sheet.

LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904

Figure 1.

Figure 2. Representative Schematic Diagram
(One-Half of Circuit Shown)

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ \mathrm{v}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{EE}} \end{gathered}$	$\begin{gathered} 32 \\ \pm 16 \end{gathered}$	Vdc
Input Differential Voltage Range (Note 1)	$\mathrm{V}_{\text {IDR }}$	± 32	Vdc
Input Common Mode Voltage Range (Note 2)	$V_{\text {ICR }}$	-0.3 to 32	Vdc
Output Short Circuit Duration	$\mathrm{t}_{\text {sc }}$	Continuous	
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
$\begin{array}{lr}\text { Thermal Resistance, Junction-to-Air (Note 3) } & \text { Case 846A } \\ \text { Case 751 } \\ \text { Case 626 }\end{array}$	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & 238 \\ & 212 \\ & 161 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD Protection at any Pin Human Body Model Machine Model	$\mathrm{V}_{\text {esd }}$	$\begin{gathered} 2000 \\ 200 \end{gathered}$	V
Operating Ambient Temperature Range LM258 LM358, LM358A LM2904/LM2904A LM2904V, NCV2904 (Note 4)	T_{A}	$\begin{gathered} -25 \text { to }+85 \\ 0 \text { to }+70 \\ -40 \text { to }+105 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Split Power Supplies.
2. For supply voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage.
3. All $R_{\theta J A}$ measurements made on evaluation board with 1 oz . copper traces of minimum pad size. All device outputs were active.
4. NCV2904 is qualified for automotive use.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	LM258			LM358			LM358A			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage } \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}} \simeq 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { (Note 5) } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { (Note 5) } \end{aligned}$	V_{10}		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \\ & 7.0 \end{aligned}$		2.0	$\begin{aligned} & 7.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	-	2.0 -	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note 5) }$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	7.0	-	-	7.0	-	-	7.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 5) Input Bias Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 5)	I_{10} I_{B}		$\begin{gathered} 3.0 \\ - \\ -45 \\ -50 \end{gathered}$	$\begin{gathered} \hline 30 \\ 100 \\ -150 \\ -300 \end{gathered}$		$\begin{gathered} \hline 5.0 \\ - \\ -45 \\ -50 \end{gathered}$	$\begin{gathered} \hline 50 \\ 150 \\ -250 \\ -500 \end{gathered}$	-	$\begin{gathered} \hline 5.0 \\ - \\ -45 \\ -50 \end{gathered}$	$\begin{gathered} 30 \\ 75 \\ -100 \\ -200 \end{gathered}$	nA
Average Temperature Coefficient of Input Offset Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note 5) }$	$\Delta \mathrm{l}_{\mathrm{I}} / \Delta \mathrm{T}$	-	10	-	-	10	-	-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Common Mode Voltage Range (Note 6), $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$	$\mathrm{V}_{\text {ICR }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline 28.3 \\ 28 \end{gathered}$	$\overline{0}$		$\begin{gathered} 28.3 \\ 28 \end{gathered}$	0 0		$\begin{gathered} 28.5 \\ 28 \end{gathered}$	V
Differential Input Voltage Range	$\mathrm{V}_{\text {IDR }}$	-	-	V_{CC}	-	-	V_{CC}	-	-	V_{CC}	V
$\begin{aligned} & \text { Large Signal Open Loop Voltage Gain } \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \text {, For Large } \mathrm{V}_{\mathrm{O}} \text { Swing, } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note } 5) \end{aligned}$	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$		-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100				-	V / mV
Channel Separation $1.0 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$, Input Referenced	CS	-	-120	-	-	-120	-	-	-120	-	dB
Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	CMR	70	85	-	65	70	-	65	70	-	dB
Power Supply Rejection	PSR	65	100	-	65	100	-	65	100	-	dB
$\begin{aligned} & \text { Output Voltage-High Limit } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note } 5) \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	V_{OH}	$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$		$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$	-	$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$	-	V
$\begin{aligned} & \text { Output Voltage-Low Limit } \\ & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note } 5) \end{array} \end{aligned}$	V OL	-	5.0	20	-	5.0	20	-	5.0	20	mV
Output Source Current $\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\mathrm{LM} 358 \mathrm{~A} \text { Only) } \end{aligned}$	$\mathrm{I}_{0}+$	20	40	-	20	40	-	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	40 -	-	mA
$\begin{aligned} & \text { Output Sink Current } \\ & \begin{array}{l} \mathrm{V}_{I D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\mathrm{LM} 358 \mathrm{~A} \text { Only) } \\ \mathrm{V}_{I D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{array} \end{aligned}$	l_{0}	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	-	$\begin{gathered} 10 \\ 5.0 \\ 12 \end{gathered}$	$\begin{gathered} 20 \\ - \\ 50 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
Output Short Circuit to Ground (Note 7)	Isc	-	40	60	-	40	60	-	40	60	mA
Power Supply Current (Total Device) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 5) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	ICC	-	$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.2 \end{aligned}$	-	1.5	3.0 1.2	-	1.5 0.7	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	mA

5. LM258: $\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$

LM358, LM358A: $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$
LM2904/LM2904A: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C} \quad$ LM2904V \& NCV2904: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ NCV2904 is qualified for automotive use.
6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.
7. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	LM2904			LM2904A			LM2904V, NCV2904			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage } \\ & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}} \simeq 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}(\text { Note 8) } \\ \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}(\text { Note 8) } \end{array} \end{aligned}$	V_{10}		2.0 - -	$\begin{aligned} & 7.0 \\ & 10 \\ & 10 \end{aligned}$	-	2.0 -	$\begin{aligned} & 7.0 \\ & 10 \\ & 10 \end{aligned}$	-	-	$\begin{aligned} & 7.0 \\ & 13 \\ & 10 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (Note 8) }$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	7.0	-	-	7.0	-	-	7.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 8) Input Bias Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 8)	I_{1} I_{B}		$\begin{gathered} 5.0 \\ 45 \\ -45 \\ -50 \end{gathered}$	$\begin{array}{\|c} \hline 50 \\ 200 \\ -250 \\ -500 \end{array}$		$\begin{gathered} 5.0 \\ 45 \\ -45 \\ -50 \end{gathered}$	$\begin{gathered} 50 \\ 200 \\ -100 \\ -250 \end{gathered}$		$\begin{gathered} 5.0 \\ 45 \\ -45 \\ -50 \end{gathered}$	$\begin{gathered} 50 \\ 200 \\ -250 \\ -500 \end{gathered}$	nA
Average Temperature Coefficient of Input Offset Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 8)	$\Delta \mathrm{l}_{10} / \Delta \mathrm{T}$	-	10	-	-	10	-	-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Common Mode Voltage Range (Note 9), $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$	$\mathrm{V}_{\text {ICR }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline 28.3 \\ 28 \end{gathered}$	$\overline{0}$	-	$\begin{gathered} \hline 28.3 \\ 28 \end{gathered}$	$\overline{0}$	-	$\begin{gathered} 28.3 \\ 28 \\ \hline \end{gathered}$	V
Differential Input Voltage Range	$\mathrm{V}_{\text {IDR }}$	-	-	V_{CC}	-	-	V_{CC}	-	-	V_{CC}	V
$\begin{aligned} & \text { Large Signal Open Loop Voltage Gain } \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \text {, For Large } \mathrm{V}_{\mathrm{O}} \text { Swing, } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note } 8) \\ & \hline \end{aligned}$	AvoL	$\begin{aligned} & 25 \\ & 15 \end{aligned}$		-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		$\begin{aligned} & 25 \\ & 15 \end{aligned}$			V / mV
Channel Separation $1.0 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$, Input Referenced	CS	-	-120	-	-	-120	-	-	-120	-	dB
Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	CMR	50	70	-	50	70	-	50	70	-	dB
Power Supply Rejection	PSR	50	100	-	50	100	-	50	100	-	dB
$\begin{aligned} & \text { Output Voltage-High Limit } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {Iow }}(\text { Note } 8) \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	V_{OH}	$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$		$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$	-	$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$		V
Output Voltage-Low Limit $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (Note 8) } \end{aligned}$	$\mathrm{V}_{\text {OL }}$	-	5.0	20	-	5.0	20	-	5.0	20	mV
Output Source Current $V_{I D}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$	$\mathrm{l}_{0}+$	20	40	-	20	40	-	20	40	-	mA
$\begin{aligned} & \text { Output Sink Current } \\ & \mathrm{V}_{I D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ID}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	I_{0} -	10	20	$\begin{aligned} & - \\ & - \end{aligned}$	10	20		10	20		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Output Short Circuit to Ground (Note 10)	Isc	-	40	60	-	40	60	-	40	60	mA
$\begin{aligned} & \hline \text { Power Supply Current (Total Device) } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high to }} \mathrm{T}_{\text {low }} \text { (Note 8) } \\ & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	I_{CC}	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.2 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	3.0 1.2	-	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.2 \\ & \hline \end{aligned}$	mA

8. LM258: $\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C} \quad$ LM358, LM358A: $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ LM2904/LM2904A: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C} \quad$ LM2904V \& NCV2904: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$
NCV2904 is qualified for automotive use.
9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.
10. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

CIRCUIT DESCRIPTION

The LM358 series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Figure 4. Input Voltage Range

Figure 3. Large Signal Voltage Follower Response

Figure 5. Large-Signal Open Loop Voltage Gain

Figure 6. Large-Signal Frequency Response

Figure 8. Power Supply Current versus Power Supply Voltage

Figure 7. Small Signal Voltage Follower Pulse Response (Noninverting)

Figure 9. Input Bias Current versus Supply Voltage

$$
\mathrm{V}_{0}=2.5 \mathrm{~V}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Figure 10. Voltage Reference

Figure 11. Wien Bridge Oscillator

$$
e_{0}=C(1+a+b)\left(e_{2}-e_{1}\right)
$$

Figure 12. High Impedance Differential Amplifier

Figure 13. Comparator with Hysteresis

Figure 14. Bi-Quad Filter

LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904

Figure 15. Function Generator

$$
\text { Given: } \begin{aligned}
f_{0} & =\text { center frequency } \\
A\left(f_{0}\right) & =\text { gain at center frequency }
\end{aligned}
$$

Choose value f_{0}, C
Then: $\quad R 3=\frac{Q}{\pi f_{0} C}$
$R 1=\frac{R 3}{2 A\left(f_{0}\right)}$
$R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}$
For less than 10% error from operational amplifier. $\frac{Q_{0} f_{0}}{B W}<0.1$
Where f_{0} and BW are expressed in Hz .
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 16. Multiple Feedback Bandpass Filter

LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904
ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
LM358ADR2G	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Tape \& Reel
LM358D		SOIC-8	98 Units/Rail
LM358DG		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
LM358DR2		SOIC-8	2500 Tape \& Reel
LM358DR2G		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Tape \& Reel
LM358DMR2		Micro8	4000 Tape \& Reel
LM358DMR2G		$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Tape \& Reel
LM358N		PDIP-8	50 Units/Rail
LM358NG		PDIP-8 (Pb-Free)	50 Units/Rail
LM258D	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC-8	98 Units/Rail
LM258DG		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
LM258DR2		SOIC-8	2500 Tape \& Reel
LM258DR2G		SOIC-8 ($\mathrm{Pb}-\mathrm{Free}$)	2500 Tape \& Reel
LM258DMR2		Micro8	4000 Tape \& Reel
LM258DMR2G		$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Tape \& Reel
LM258N		PDIP-8	50 Units/Rail
LM258NG		$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units/Rail
LM2904D	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	SOIC-8	98 Units/Rail
LM2904DG		$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
LM2904DR2		SOIC-8	2500 Tape \& Reel
LM2904DR2G		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Tape \& Reel
LM2904DMR2		Micro8	2500 Tape \& Reel
LM2904DMR2G		$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Tape \& Reel
LM2904N		PDIP-8	50 Units/Rail
LM2904NG		$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units/Rail
LM2904ADMG		$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Tape \& Reel
LM2904ADMR2		Micro8	4000 Tape \& Reel
LM2904ADMR2G		$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Tape \& Reel
LM2904AN		PDIP-8	50 Units/Rail
LM2904ANG		$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units/Rail

[^0]ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
LM2904VD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SOIC-8	98 Units/Rail
LM2904VDG		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
LM2904VDR2		SOIC-8	2500 Tape \& Reel
LM2904VDR2G		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Tape \& Reel
LM2904VDMR2		Micro8	4000 Tape \& Reel
LM2904VDMR2G		$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Tape \& Reel
LM2904VN		PDIP-8	50 Units/Rail
LM2904VNG		$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units/Rail
NCV2904DR2*		SOIC-8	2500 Tape \& Reel
NCV2904DR2G*		$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Tape \& Reel
NCV2904DMR2*		Micro8	4000 Tape \& Reel
NCV2904DMR2G*		Micro8 ($\mathrm{Pb}-\mathrm{Fr}$))	4000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV2904 is qualified for automotive use.

MARKING DIAGRAMS

PDIP-8
N SUFFIX
CASE 626

SOIC-8
D SUFFIX
CASE 751

PDIP-8 AN SUFFIX CASE 626

PDIP-8 VN SUFFIX CASE 626

SOIC-8 VD SUFFIX CASE 751
 Micro8
DMR2 SUFFIX
CASE 846A
 *
$x \quad=2$ or 3

X	$=2$ or 3
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
YY, Y	$=$ Year
WW, W	$=$ Work Week
G	$=$ Pb-Free Package
-	$=$ Pb-Free Package - (Note: Microdot may be in either location)

LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904

PACKAGE DIMENSIONS

LM258, LM358, LM358A, LM2904, LM2904A, LM2904V, NCV2904

PACKAGE DIMENSIONS

SOIC-8 NB
CASE 751-07
ISSUE AJ

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	BSC	0.050 BSC	
H	0.10	0.25	0.004	0.010
\mathbf{J}	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0			
${ }^{\circ}$	8°	0	0	8
N	0.25	0.50	0.010	0.020
\mathbf{S}	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Micro8 ${ }^{\text {m }}$
CASE 846A-02
ISSUE G

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
A	--	--	1.10	--	--	0.043	
A1	0.05	0.08	0.15	0.002	0.003	0.006	
b	0.25	0.33	0.40	0.010	0.013	0.016	
c	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	2.90	3.00	3.10	0.114	0.118	0.122	
e	0.65 BSC				0.026 BSC		
L	0.40	0.55	0.70	0.016	0.021	0.028	
HE 2	4.75	4.90	5.05	0.187	0.193	0.199	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8 is a trademark of International Rectifier.
ON Semiconductor and (011 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

