ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

Analog Multiplexer/ **Demultiplexer**

High-Performance Silicon-Gate CMOS

The MC74LVXT4052 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. This analog multiplexer/demultiplexer controls analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}).

The LVXT4052 is similar in pinout to the high-speed HC4052A and the metal-gate MC14052B. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

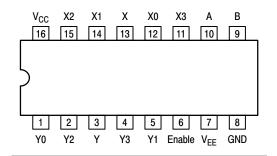
The Channel-Select and Enable inputs are compatible with standard TTL levels.

This device has been designed so the ON resistance (R_{ON}) is more linear over input voltage than the RON of metal-gate CMOS analog switches and High-Speed CMOS analog switches.

Features

- Select Pins Compatible with TTL Levels
- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Analog Power Supply Range $(V_{CC} V_{EE}) = -3.0 \text{ V to } + 3.0 \text{ V}$
- Digital (Control) Power Supply Range $(V_{CC} GND) = 2.5$ to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal-Gate, HSL, or VHC Counterparts
- Low Noise
- Designed to Operate on a Single Supply with $V_{EE} = GND$, or Using Split Supplies up to ±3.0 V
- Break–Before–Make Circuitry
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®


www.onsemi.com

CASE 751B

PIN ASSIGNMENT

MARKING DIAGRAMS

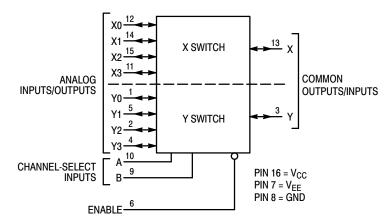
WW. W = Work Week G or •

А

Y

= Pb-Free Package

(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

FUNCTION TABLE

Contr	Control Inputs			
Enable	Sel B	ON Ch	annels	
	L L H X	L H L H X	Y0 Y1 Y2 Y3 NO	X0 X1 X2 X3 NE

X = Don't Care

NOTE: This device allows independent control of each switch. Channel–Select Input A controls the X–Switch, Input B controls the Y–Switch.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVXT4052DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LVXT4052DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LVXT4052DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LVXT4052DTRG	TSSOP-16 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Pa	rameter	Value	Unit
V_{EE}	Negative DC Supply Voltage	(Referenced to GND)	-7.0 to +0.5	V
V _{CC}	Positive DC Supply Voltage	(Referenced to GND) (Referenced to V _{EE})	-0.5 to +7.0 -0.5 to +7.0	V
VIS	Analog Input Voltage		V_{EE} – 0.5 to V_{CC} + 0.5	V
V _{IN}	Digital Input Voltage	(Referenced to GND)	-0.5 to 7.0	V
I	DC Current, Into or Out of Any Pin		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for	10 Seconds	260	°C
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance	SOIC TSSOP	143 164	°C/W
PD	Power Dissipation in Still Air,	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94–V0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 2000 > 200 > 1000	V
ILATCHUP	Latchup Performance	Above V_{CC} and Below GND at 125°C (Note 4)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

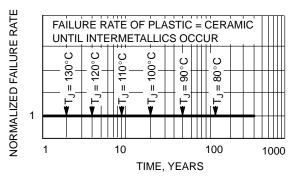
1. Tested to EIA/JESD22-A114-A.

2. Tested to EIA/JESD22-A115-A.

3. Tested to JESD22-C101-A.

4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS


Symbol	Parameter	Parameter					
V_{EE}	Negative DC Supply Voltage	(Referenced to GND)	-6.0	GND	V		
V _{CC}	Positive DC Supply Voltage	(Referenced to GND) (Referenced to V_{EE})	2.5 2.5	6.0 6.0	V		
V _{IS}	Analog Input Voltage		V _{EE}	V _{CC}	V		
V _{IN}	Digital Input Voltage	(Note 5) (Referenced to GND)	0	6.0	V		
T _A	Operating Temperature Range, All Package Types		-55	125	°C		
t _r , t _f	Input Rise/Fall Time (Channel Select or Enable Inputs)	$\begin{array}{c} V_{CC} = 3.0 \ V \pm 0.3 \ V \\ V_{CC} = 5.0 \ V \pm 0.5 \ V \end{array}$	0 0	100 20	ns/V		

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

			V _{CC}	Guara	nteed Lin	nit	
Symbol	Parameter	Condition	V	–55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Volt- age, Channel-Select or Enable Inputs		3.0 4.5 5.5	2.0 2.0 2.0	2.0 2.0 2.0	2.0 2.0 2.0	V
V _{IL}	Maximum Low–Level Input Volt- age, Channel–Select or Enable Inputs		3.0 4.5 5.5	0.5 0.8 0.8	0.5 0.8 0.8	0.5 0.8 0.8	V
I _{IN}	Maximum Input Leakage Current, Channel–Select or Enable Inputs	V _{IN} = 6.0 or GND	0 V to 6.0 V	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	Channel Select, Enable and $V_{IS} = V_{CC}$ or GND	6.0	4.0	40	80	μΑ

DC ELECTRICAL CHARACTERISTICS – Analog Section

			v _{cc}	V _{EE}	Guara	nteed Lim	nit	
Symbol	Parameter	Test Conditions	V	V	–55 to 25°C	≤85°C	≤125°C	Unit
R _{ON}	Maximum "ON" Resistance		3.0 4.5 3.0	0 0 -3.0	86 37 26	108 46 33	120 55 37	Ω
ΔR _{ON}	Maximum Difference in "ON" Re- sistance Between Any Two Channels in the Same Package	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = \frac{1}{2} (V_{CC} - V_{EE})$ $ I_S = 2.0 \text{ mA}$	3.0 4.5 3.0	0 0 -3.0	15 13 10	20 18 15	20 18 15	Ω
l _{off}	Maximum Off–Channel Leakage Current, Any One Channel	$V_{in} = V_{IL} \text{ or } V_{IH};$ $V_{IO} = V_{CC} \text{ or } GND;$ Switch Off (Figure 3)	5.5 +3.0	0 -3.0	0.1 0.1	0.5 0.5	1.0 1.0	μΑ
	Maximum Off–Channel Leakage Current, Common Channel	$V_{in} = V_{IL} \text{ or } V_{IH};$ $V_{IO} = V_{CC} \text{ or } GND;$ Switch Off (Figure 4)	5.5 +3.0	0 -3.0	0.2 0.2	2.0 2.0	4.0 4.0	
l _{on}	Maximum On–Channel Leakage Current, Channel–to–Channel	$V_{in} = V_{IL} \text{ or } V_{IH};$ Switch-to-Switch = V_{CC} or GND; (Figure 5)	5.5 +3.0	0 -3.0	0.2 0.2	2.0 2.0	4.0 4.0	μΑ

AC CHARACTERISTICS (Input $t_r = t_f = 3 \text{ ns}$)

					Guara		nteed Lim		
			v _{cc}	V _{EE}	–55 to	25°C			
Symbol	Parameter	Test Conditions	V	V	Min	Тур*	≤85°C	≤125°C	Unit
t _{ВВМ}	Minimum Break–Before–Make Time	$ \begin{array}{l} V_{IN} = V_{IL} \mbox{ or } V_{IH} \\ V_{IS} = V_{CC} \\ R_L = \ 300 \ \Omega, \ C_L = \ 35 \ pF \\ (Figures \ 11 \ and \ 12) \end{array} $	3.0 4.5 3.0	0.0 0.0 -3.0	1.0 1.0 1.0	6.5 5.0 3.5	- - -	- - -	ns

*Typical Characteristics are at 25°C.

AC CHARACTERISTICS (CL = 50 pF, Input $t_r = t_f = 3 \text{ ns}$)

						Guar	anteed	Limit			
		v _{cc}	V _{EE}	-5	55 to 25	°C	≤8	5°C	≤12	25°C	
Symbol	Parameter	V	VEE	Min	Тур	Max	Min	Мах	Min	Мах	Unit
t _{PLH} ,	Maximum Propagation Delay, Channel-Select	2.5	0			40		45		50	ns
t _{PHL}	to Analog Output	3.0	0			28		30		35	
	(Figures 15 and 16)	4.5	0			23		25		30	
		3.0	-3.0			23		25		28	
t _{PLZ} ,	Maximum Propagation Delay, Enable to Analog	2.5	0			40		45		50	ns
t _{PHZ}	Output (Figures 13 and 14)	3.0	0			28		30		35	
		4.5	0			23		25		30	
		3.0	-3.0			23		25		28	
t _{PZL} ,	Maximum Propagation Delay, Enable to Analog	2.5	0			40		45		50	ns
t _{PZH}	Output (Figures 13 and 14)	3.0	0			28		30		35	
		4.5	0			23		25		30	
		3.0	-3.0			23		25		28	
				Т	ypical	@ 25°C	, V _{CC} =	5.0 V, V	/ _{EE} = 0	v	
C _{PD}	Power Dissipation Capacitance (Figure 17) (Note	6)					45				pF
C _{IN}	Maximum Input Capacitance, Channel–Select or	Enable Ir	nputs				10				pF
C _{I/O}	Maximum Capacitance		alog I/O				10				
	(All Switches Off)		non O/I through				10 1.0				pF

6. Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

			v _{cc}	V _{EE}	Тур	
Symbol	Parameter	Condition	v	V	25°C	Unit
BW	Maximum On–Channel Bandwidth or Minimum Frequency Response	$V_{IS} = \frac{1}{2} (V_{CC} - V_{EE})$ Ref and Test Attn = 10 dB Source Amplitude = 0 dB (Figure 6)	3.0 4.5 6.0 3.0	0.0 0.0 0.0 -3.0	80 80 80 80	MHz
V _{ISO}	Off-Channel Feedthrough Isolation	$ f = 1 \text{ MHz}; V_{IS} = \frac{1}{2} (V_{CC} - V_{EE}) $ Adjust Network Analyzer output to 10 dBm on each output from the power splitter. (Figures 7 and 8)	3.0 4.5 6.0 3.0	0.0 0.0 0.0 -3.0	-70 -70 -70 -70	dB
V _{ONL}	Maximum Feedthrough On Loss	$V_{IS} = \frac{1}{2} (V_{CC} - V_{EE})$ Adjust Network Analyzer output to 10 dBm on each output from the power splitter. (Figure 10)	3.0 4.5 6.0 3.0	0.0 0.0 0.0 -3.0	-2 -2 -2 -2	dB
Q	Charge Injection	$ \begin{array}{l} V_{\text{IN}} = V_{\text{CC}} \text{ to } V_{\text{EE},} f_{\text{IS}} = 1 \text{ kHz}, t_{\text{f}} = \text{t}_{\text{f}} = 3 \text{ ns} \\ \text{R}_{\text{IS}} = 0 \ \Omega, \ \text{C}_{\text{L}} = 1000 \text{ pF}, \ \text{Q} = \text{C}_{\text{L}} * \Delta V_{\text{OUT}} \\ \text{(Figure 9)} \end{array} $	5.0 3.0	0.0 -3.0	9.0 12	рС
THD	Total Harmonic Distortion THD + Noise		6.0 3.0	0.0 -3.0	0.10 0.05	%

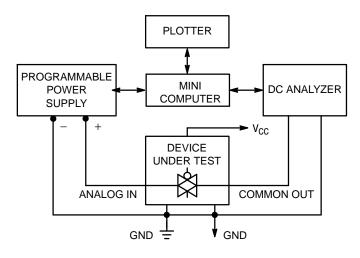
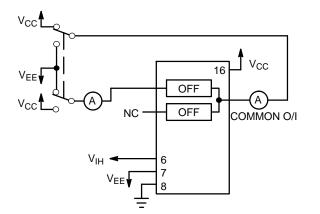



Figure 3. On Resistance, Test Set-Up

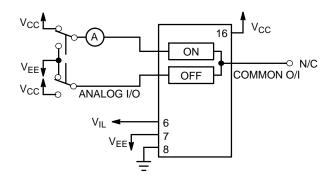


Figure 5. Maximum On Channel Leakage Current, Channel to Channel, Test Set–Up

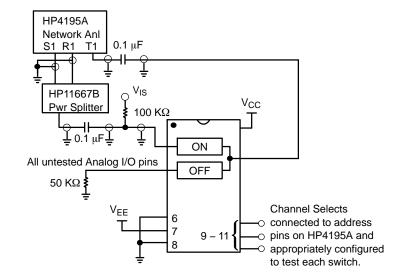
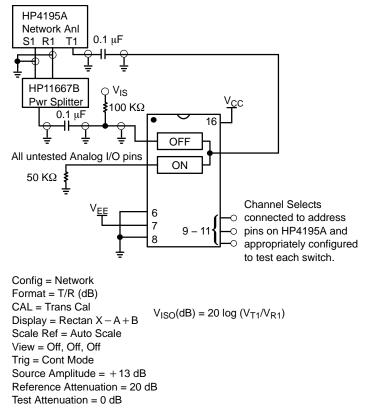



Figure 6. Maximum On Channel Bandwidth, Test Set-Up

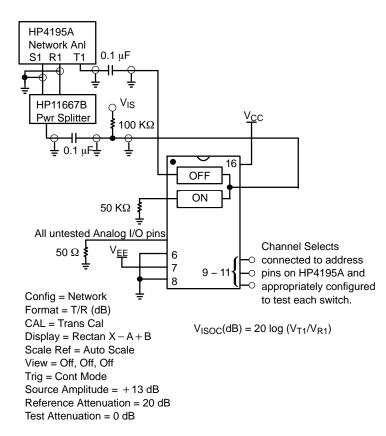
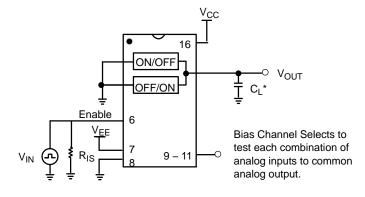
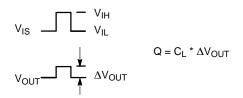




Figure 8. Maximum Common–Channel Feedthrough Isolation, Test Set–Up

*Includes all probe and jig capacitance.

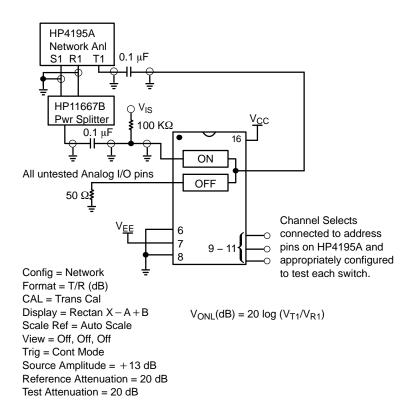


Figure 10. Maximum On Channel Feedthrough On Loss, Test Set-Up

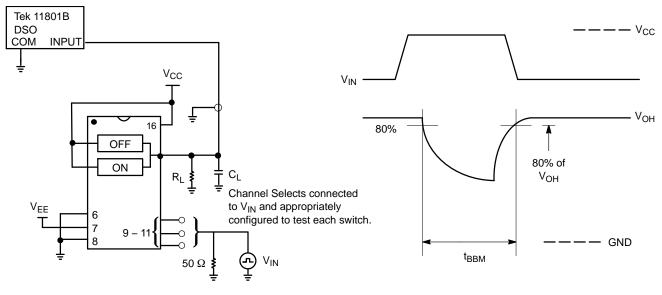
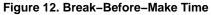
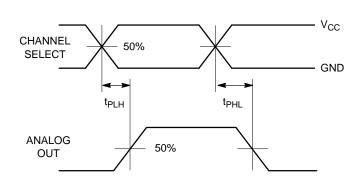
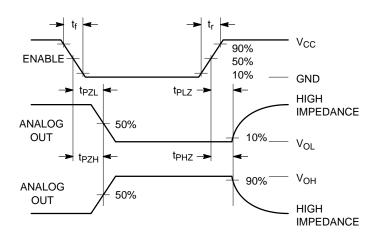





Figure 11. Break–Before–Make, Test Set–Up

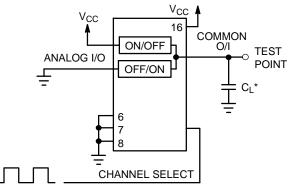
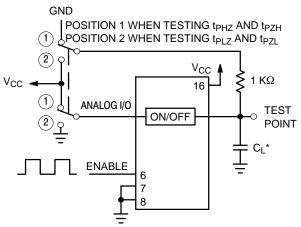
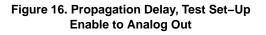


Figure 13. Propagation Delays, Channel Select to Analog Out





*Includes all probe and jig capacitance.

Figure 14. Propagation Delay, Test Set–Up Channel Select to Analog Out

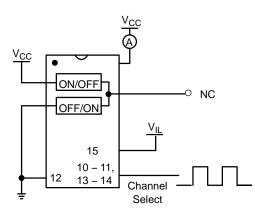


Figure 17. Power Dissipation Capacitance, Test Set–Up

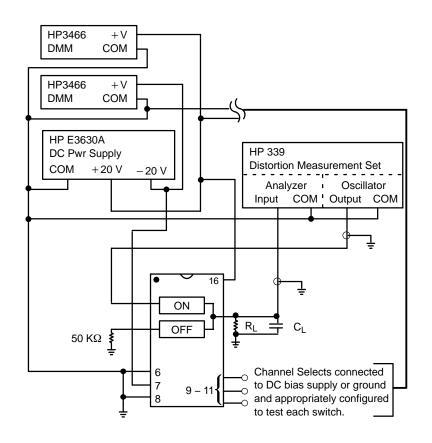


Figure 18. Total Harmonic Distortion, Test Set-Up

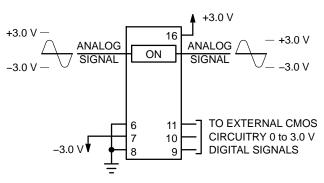
APPLICATIONS INFORMATION

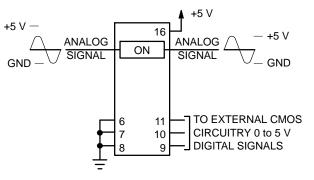
The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$V_{CC} = +5 V = logic high$$

GND = 0 V = logic low

The maximum analog voltage swing is determined by the supply voltages V_{CC} and V_{EE} . The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below V_{EE} . In this example, the difference between V_{CC} and V_{EE} is five volts. Therefore, using the configuration of Figure 20, a maximum analog signal of five volts peak–to–peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and




Figure 19. Application Example

outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$\begin{split} V_{EE} - GND &= 0 \text{ to } -6 \text{ volts} \\ V_{CC} - GND &= 2.5 \text{ to } 6 \text{ volts} \\ V_{CC} - V_{EE} &= 2.5 \text{ to } 6 \text{ volts} \\ \text{and } V_{EE} &\leq GND \end{split}$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes (D_x) are recommended as shown in Figure 21. These diodes should be able to absorb the maximum anticipated current surges during clipping.

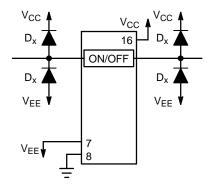


Figure 21. External Germanium or Schottky Clipping Diodes

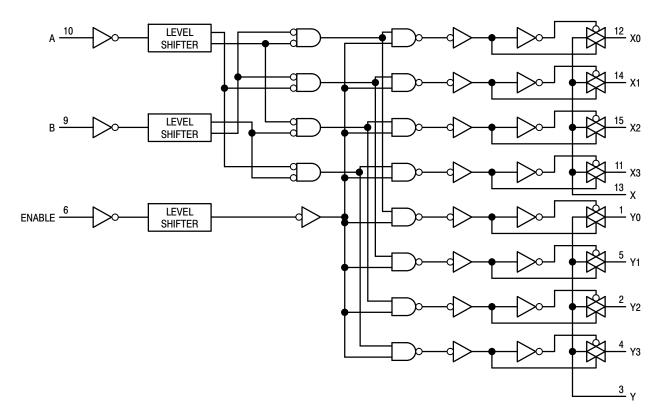
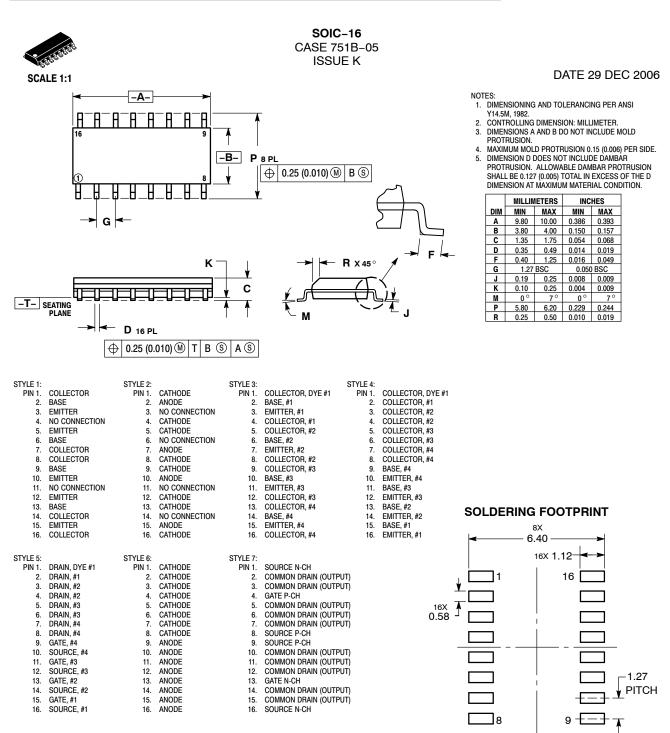
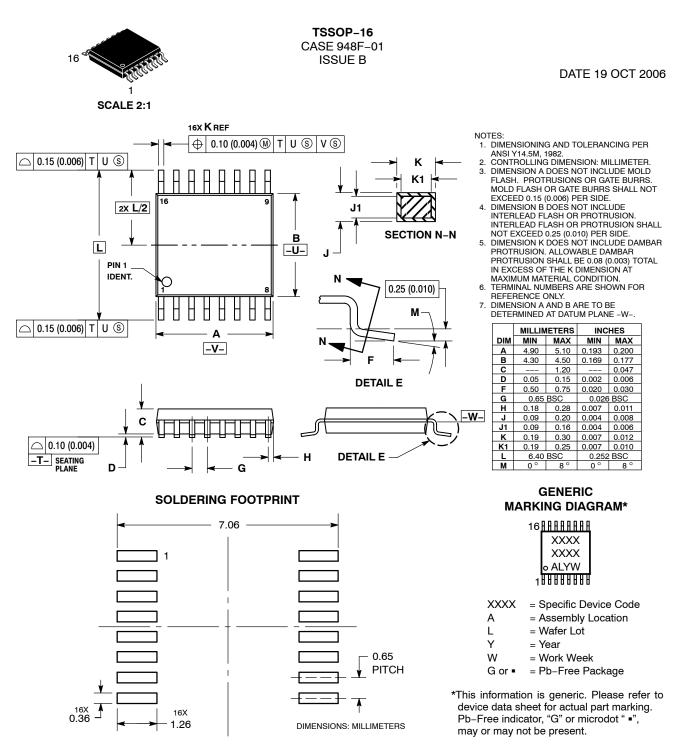



Figure 22. Function Diagram, LVXT4052



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOIC-16	PAGE 1 OF						
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically					

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repose Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1				
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or acidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically				

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥