NS3L500

3.3V, 8-Channel, 2:1 Gigabit Ethernet LAN Switch with LED Switch

The NS3L500 is a 8 -channel 2:1 LAN switch with 3 additional built-in SPDT switches for LED routing. This switch is ideal for Gigabit LAN applications due to its low ON-state resistance and capacitance giving the switch a typical bandwidth of 800 MHz . The switch also has excellent ON-state resistance match, low bit-to-bit skew, and low crosstalk among channels. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs.

This part can be used to replace mechanical relays in low-voltage LAN applications that interface a physical layer over CAT 5 or CAT 6 unshielded twisted pair cable through an isolation transformer. The NS3L500 is available in a 56-pin WQFN package and operates over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- V_{CC} Operating Range: +3.0 V to +3.6 V
- Low ON-State Resistance ($\mathrm{R}_{\mathrm{ON}}=4 \Omega$ Typical)
- Low ON-State Capacitance (CON $=7 \mathrm{pF}$ Typical)
- Flat ON-State Resistance $\left(\mathrm{R}_{\mathrm{ON}}(\mathrm{flat})=0.5 \Omega\right.$ Typical $)$
- Wide Bandwidth (800 MHz Typical)
- Low Crosstalk $\left(\mathrm{X}_{\text {TALK }}=-37 \mathrm{~dB}\right.$ Typical $)$
- Near-Zero Propagation Delay: 250 ps
- Low Bit-to-Bit Skew (tsk(o) = 100 ps Max)
- Three SPDT Channels for LED Signal Switching
- Packaging: 56-Pin WQFN
- Pin-to-Pin Compatible with PI3L500-A, TS3L500AE and MAX4927
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- 10/100/1000 Base-T Ethernet Signal Switching
- Notebooks and Docking Stations
- Hub and Router Signal Switching
- Differential (LVDS, LVPECL) Signal Switching

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
-	$=$ Pb-Free Package

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

NS3L500

Figure 1. Pinout
(Top View)

Figure 2. Block Diagram

PIN DESCRIPTION

Pin Name	Description
A_{x}	Data I/Os
xB_{y}	Data I/Os
SEL	Select Input
LED $_{\mathrm{x}}$	LED I/O Port
$\mathrm{xLED}_{\mathrm{y}}$	LED I/O Port

TRUTH TABLE

SEL	Function
L	A_{x} to $x_{1}:$ LED $_{x}$ to $\times L E D_{1}$
H	A_{x} to $x B_{2}:$ LED $_{x}$ to $x L E D_{2}$

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Unit
V_{CC}	V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{V}_{\text {IN }}$	SEL	Control Input Voltage	-0.5 to +5.5	V
$\mathrm{V}_{1 / \mathrm{O}}$	$\mathrm{A}_{\mathrm{X}}, \mathrm{xB} \mathrm{B}_{\mathrm{Y}}$, LED x , xLEDY	Switch I/O Voltage Range	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
ICC	V_{CC}	DC Output Current	± 120	mA
I_{IK}	SEL	Control Input Clamp Current	-50	mA
$\mathrm{I}_{1 / \mathrm{O}}$	$\begin{gathered} \hline \mathrm{A}_{\mathrm{X}}, \mathrm{xB}_{\mathrm{Y}}, \\ \text { LED }, \\ \text { xLED }, \end{gathered}$	ON-State Switch Current	± 120	mA
$\mathrm{R}_{\text {өJA }}$		Thermal Resistance, Junction-to-Air	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{S}		Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Value	Unit
V_{CC}	V_{CC}	Positive DC Supply Voltage	+3.0 to +3.6	V
$\mathrm{~V}_{\mathrm{IN}}$	SEL	Control Input Voltage	0 to +5.5	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{A}_{\mathrm{X}}, \times \mathrm{xB}$, LED, xLED	Switch I/O Voltage Range		V
T_{CC}		Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

DC ELECTRICAL CHARACTERISTICS (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

				$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Symbol	Pins	Parameters	Conditions	Min	Typ	Max	Unit

1000 BASE-T ETHERNET SWITCHING

V_{IH}	SEL	Control Input HIGH Voltage		2		5.5	V
$\mathrm{V}_{\text {IL }}$	SEL	Control Input LOW Voltage		-0.5		0.8	V
V_{IK}	SEL	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	V
$\mathrm{IIH}^{\text {H }}$	SEL	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	-1		+1	$\mu \mathrm{A}$
IIL	SEL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	-1		+1	$\mu \mathrm{A}$
IofF	SEL	Off-Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3.6 V			± 1.5	$\mu \mathrm{A}$
ICC	V_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$		250	600	$\mu \mathrm{A}$
${ }^{\text {LLA }}$ (OFF)	$A_{X},{ }^{\text {x }}{ }_{Y}$	Off-Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=3.6 \mathrm{~V}, \mathrm{VA} x=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \mathrm{VxB}_{1} \\ & \text { or } \mathrm{V} \times \mathrm{B}_{2}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$
LLA_(ON)	$A_{X}, x B_{Y}$	On-Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{VA} x=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \mathrm{VxB}_{1} \\ & \text { or } \mathrm{V} \times \mathrm{B}_{2}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, or floating } \end{aligned}$	-1		+1	$\mu \mathrm{A}$
R ON	$A_{X}, x B_{Y}$	On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{l}_{\mathrm{O}}=-40 \mathrm{~mA} \end{aligned}$		4	7	Ω
R ${ }_{\text {ON(FLAT) }}$	$A_{X},{ }^{\text {x }}{ }_{Y}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.5 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{l}_{\mathrm{O}}=-40 \mathrm{~mA} \end{aligned}$		0.5		Ω
$\Delta \mathrm{R}_{\text {ON }}$	$A_{X},{ }_{\text {x }}{ }_{Y}$	On-Resistance Match Between Switch Pairs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-40 \mathrm{~mA} \end{aligned}$		0.4	1	Ω

10/100 BASE-T ETHERNET SWITCHING

V_{IH}	SEL	Control Input HIGH Voltage		2		5.5	V
V_{IL}	SEL	Control Input LOW Voltage		-0.5		0.8	V
V_{IK}	SEL	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	V
$\mathrm{IIH}^{\text {H }}$	SEL	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	-1		+1	$\mu \mathrm{A}$
IIL	SEL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	-1		+1	$\mu \mathrm{A}$
IofF	SEL	Off-Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3.6 V			± 1.5	$\mu \mathrm{A}$
I_{CC}	V_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$		250	600	$\mu \mathrm{A}$
${ }^{\text {LLA }}$ (OFF)	$A_{X},{ }^{\text {x }}{ }_{Y}$	Off-Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{VAx}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \mathrm{VxB}_{1} \\ & \text { or } V \mathrm{VB}_{2}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$
ILA_(ON)	$A_{X},{ }_{\text {x }}{ }_{Y}$	On-Leakage Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{VA}_{\mathrm{X}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \mathrm{VxB}_{1}$ or $\mathrm{VxB}_{2}=0.3 \mathrm{~V}$, 3.3 V , or floating	-1		+1	$\mu \mathrm{A}$
R_{ON}	$A_{X},{ }^{\text {x }}{ }_{Y}$	On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA} \text { to }-30 \mathrm{~mA} \end{aligned}$		4	6	Ω
R ON (FLAT)	$A_{X},{ }^{\text {x }}{ }_{Y}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.25 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA} \text { to }-30 \mathrm{~mA} \end{aligned}$		0.5		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	$A_{X},{ }^{\text {x }}{ }_{Y}$	On-Resistance Match Between Switch Pairs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA} \text { to }-30 \mathrm{~mA} \end{aligned}$		0.4	1	Ω

DC ELECTRICAL CHARACTERISTICS (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Symbol	Pins	Parameters	Conditions	Min	Typ	Max	Unit

LED SWITCHING

RoN	$\begin{aligned} & \hline \text { LED }, \\ & \text { xLED }, \end{aligned}$	On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-40 \mathrm{~mA} \end{aligned}$	15	25	Ω
$\mathrm{R}_{\text {ON(FLAT) }}$	$\begin{aligned} & \text { LEDx, } \\ & \text { xLEDy } \end{aligned}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.25 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-40 \mathrm{~mA} \end{aligned}$	8		Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \text { LED }_{X}, \\ & \text { xLED } \end{aligned}$	On-Resistance Match Between Switch Pairs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{O}}=-40 \mathrm{~mA} \end{aligned}$	1	2	Ω

AC ELECTRICAL CHARACTERISTICS (Typicals: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)*

| | | | | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Pins | Parameters | Conditions | MinTyp
 Max | Unit | |

SWITCHING CHARACTERISTICS

	$\mathrm{A}_{\mathrm{x}}, \mathrm{xB}_{\mathrm{y}}$	Propagation Delay	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V (Figure 3)		0.25		ns
ton	SEL, x LED ${ }_{y}$	Line Enable Time - SEL to x LED $_{Y}$	Output: Closed to Open $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V (Figure 4)	0.5		15	ns
	SEL, $x \mathrm{~B}_{\mathrm{y}}$	Lines Enable Time - SEL to $\times B_{y}$		0.5		3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF }}$	SEL, xLED ${ }_{\text {y }}$	Line Enable Time - SEL to x LED $_{Y}$	Output: Open to Closed $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V (Figure 4)	0.5		9	ns
	SEL, $\mathrm{xB} \mathrm{y}^{\text {}}$	Lines Enable Time - SEL to $\times B_{y}$		0.5		35	ns
${ }^{\text {tsk(0) }}$	$\mathrm{A}_{\mathrm{x}}, \mathrm{xB}_{\mathrm{y}}$	Output Skew between center port to any other port	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V (Calculated, Figure 3)		50	100	ps
${ }_{\text {tSK(P) }}$	$\mathrm{A}_{\mathrm{x}}, \mathrm{xB}_{\mathrm{y}}$	Skew between opposite transition of the same output ($\mathrm{t}_{\mathrm{PLL}}-\mathrm{t}_{\mathrm{PLH}}$)	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V (Calculated, Figure 3)		50	100	ps

DYNAMIC ELECTRICAL CHARACTERISTICS

BW	$\mathrm{xB}_{\mathrm{y},} \mathrm{xLED}_{\mathrm{y}}$	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (Figure 5)	800	MHz
OIRR	$\mathrm{A}_{\mathrm{X}}, \mathrm{LED}_{\mathrm{X}}$	Off - Isolation	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{f}=250 \mathrm{MHz}$ (Figure 6)	-37	dB
$\mathrm{X}_{\text {TALK }}$	$\begin{gathered} \mathrm{A}_{X} \text { to } \times \mathrm{B}_{\mathrm{Y}} \\ \mathrm{~A}_{(\mathrm{X}+2) \text { to }} \\ (\mathrm{X}+2) \mathrm{B}_{Y} \end{gathered}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{f}=250 \mathrm{MHz}$ (Figure 7)	-37	dB

CAPACITANCE

$\mathrm{Cl}_{\text {IN }}$	SEL	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	2	3	pF
Con	$\mathrm{A}_{\mathrm{x}}, \mathrm{xB}_{\mathrm{y}}$	ON Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Outputs Open, Switch ON	7	10	pF
CofF	xBy	B Port Switch Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Outputs Open, Switch OFF	5	6	pF

[^0]

Figure 3. Propagation Delay

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. Bandwidth

Figure 6. Off-Isolation

1. C_{L} includes probe and jig capacitance.
2. A 50Ω termination resistor is needed to match the loading of the network analyzer.

Figure 7. Test Circuit for Crosstalk ($\mathrm{X}_{\text {TALK }}$)
Crosstalk is measured at the output of the nonadjacent $O N$ channel. For example, when $V_{S E L}=0$ and A_{0} is the input, the output is measured at $1 B_{1}$. All unused analog input (A) ports are connected to GND, and output (B) ports are connected to GND through 50Ω pulldown resistors.

APPLICATION INFORMATION

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to $3.6 \mathrm{~V}>$ Driving IN Rail-to-Rail \mathbb{R} minimizes power consumption.

Power-Supply Sequencing

Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{CC} before applying signals to the input/output or control pins.

ORDERING INFORMATION

Device	Package	Shipping †
NS3L500MTTWG	WQFN56 (Pb-free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

WQFN56 5x11, 0.5P
CASE 510AK-01
ISSUE A
DATE 02 MAR 2010

NOTES:

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
CONTROLLING DIMENSIONS: MILLIMETERS
DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 mm FROM THE TERMINAL TIP
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.70	0.80
A1	---	0.05
A3	0.20 REF	
b	0.20	0.30
D	5.00 BSC	
D2	2.30	2.50
E	11.00 BSC	
E2	8.30	8.50
e	0.50 BSC	
K	0.20 MIN	
,	0.30	0.50
L1	---	0.15

GENERIC
MARKING DIAGRAM
XXXXXXXX XXXXXXXX AWLYYWWG

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year WW = Work Week $\mathrm{G} \quad=\mathrm{Pb}$-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

| DOCUMENT NUMBER: | 98AON45390E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLEED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WQFN56 5x11, 0.5P | PAGE 1 OF 1 |

[^1]onsemi, OnSEMi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: *Guaranteed by design and/or characterization.

[^1]: ON Semiconductor and UN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

