

P420m 2.5-Inch PCIe NAND Flash SSD

MTFDGAL350MAX, MTFDGAL700MAX

Features

- Micron[®] 25nm MLC NAND Flash
- ONFI 2.1-compliant Flash interface
- PCIe Gen2 x4 host interface
- Capacity:¹ 350GB, 700GB
- Endurance^{2, 3} (total bytes written):
- 350GB: 2.3PB (4KB random write),
 4.85PB (128KB sequential write)
- 700GB: 4.6PB (4KB random write),
 9.7PB (128KB sequential write)
- Temperature:
 - Operating: 0°C to +85°C⁴
 - Storage (in system): 0°C to +40°C⁵
 - Storage (on shelf): -40° C to $+85^{\circ}$ C⁵
 - Temperature throttling support
- ATA modes supported
 - PIO modes 3 and 4
 - Multiword DMA modes 0, 1, 2
 - Ultra DMA modes 0, 1, 2, 3, 4, 5, 6
 - ATA8-ACS2 command set support
 - ATA security feature command set and password login support
- Industry-standard 512-byte sector size support
- Full end-to-end data protection
- Native command queuing up to 256 commands
- Bootable⁶
- Surprise insertion/surprise removal (SISR) and hotplug capable
- Power: <25W RMS
- Random read/write (steady state) performance⁷
 - Random read: Up to 400,000 IOPS (4KB IO size)
 - Random write: Up to 51,000 IOPS (4KB IO size)
- Sequential read/write (steady state) performance⁷
 - Sequential read: Up to 1.7 GB/s (128KB IO size)
 - Sequential write: Up to 500 MB/s (128KB IO size)
- Latency (queue depth = 1)⁷
 - READ latency: <100µs (MIN)
 - WRITE latency: ≤15µs posted (MIN)
- Custom drivers
 - Windows Server 2012 R2 (x86-64), Hyper-V (x86-64)
 - Windows Server 2012 (x86-64), Hyper-V (x86-64)
 - Windows Server 2008 R2 SP1 (x86-64), Hyper-V (x86-64)
 - Windows 8, 8.1 (x86-64 and x86)
 - Windows 7 (x86-64 and x86)

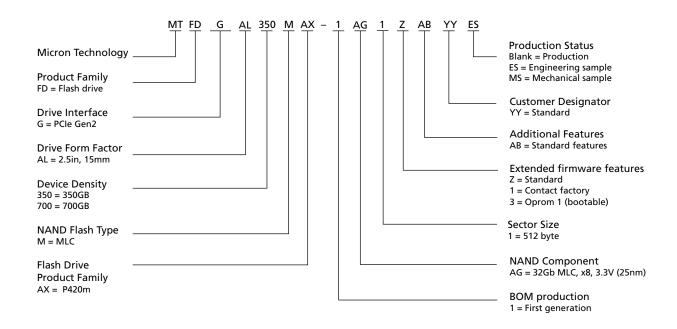
- RHEL 5.5–5.10, 6.0–6.5, 7 (x86-64)
- SLES 11 SP1, SP2, SP3 (x86-64)
- VMware 5.0, 5.1 (x86-64)
- VMware 5.5 (inbox driver)
- Citrix XenServer 6.0.2, 6.1, 6.2
- Ubuntu 12.04-12.04.4, 14.04 LTS Server (64-bit)
- Reliability
 - MTTF: 2.0 million hours
 - Static and dynamic wear leveling
 - Field-upgradable firmware
 - Uncorrectable bit error rate (UBER): <1 sector per 10¹⁷ bits read
 - Power Holdup Protection for MLC NAND
- Micron RAIN (redundant array of independent NAND) technology
- SMART command set support
- On-chip temperature monitoring
- Mechanical/electrical
 - 2.5-inch form factor: 69.85mm x 100.20mm x 15.00mm
 - PCIe-compliant, x4 lane combo connector
 - 12V power (±8%)
 - Weight: 350GB -142.9g; 700GB 145.15g
- Shock (nonoperational): 400g at 2ms half-sine, 150g at 10ms half-sine
- Vibration (nonoperational): 3.1 grms 5–800Hz at 30 min/axis
- RoHS-compliant
 - Notes: 1. User capacity: 1GB = 1 billion bytes.
 - 2. Lifetime endurance is measured not in years, but in the number of bytes that can be written to the device.
 - 3. Workloads are 100% writes.
 - 4. Operating temperature is the drive case temperature as measured by the SMART temperature attribute.
 - 5. Assumes system is powered off and ready to be powered on.
 - Bootable option determined by part number; see Part Numbering Information (page 2). Boot ability may not be compatible with some systems.
 - 7. See Performance Specifications (page 4) for details.

PDF: 09005aef84adf86d

p420m_2_5.pdf - Rev. U 8/14 EN

1

Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2012 Micron Technology, Inc. All rights reserved.

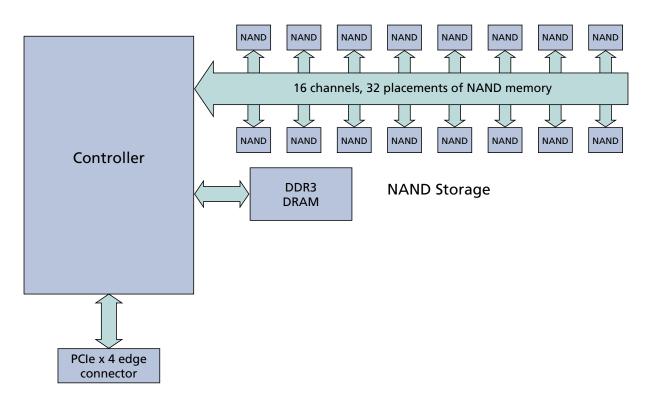

^{4 EN} © 2012 Micron Technol Products and specifications discussed herein are subject to change by Micron without notice.

Part Numbering Information

The Micron[®] P420m SSD is available in different configurations and densities. Visit www.micron.com for a list of valid part numbers.

Figure 1: Part Number Chart

Warranty: Contact your Micron sales representative for further information regarding the product, including product warranties.



General Description

Micron's solid state drive (SSD) is targeted at applications that require high performance and enterprise-class storage reliability. The P420m is designed to deliver extremely high IOPS performance by its ability to support up to 256 outstanding commands while ensuring full end-to-end data protection.

The P420m comes in a 2.5-inch form factor and uses a second-generation (Gen2) PCIe x4 lane interface on the host side and 16 ONFI 2.1-compliant channels on the Flash side.

Figure 2: Functional Block Diagram

Architecture

The single-chip, Micron-developed ASIC controller, along with the host and Flash interfaces, provide an embedded ATA host bus adapter, a host/Flash translation layer, Flash maintenance, channel control, and Flash RAID (RAIN) protection.

Flash endurance and reliability are optimized through the Flash maintenance features, including static and dynamic wear leveling and RAIN protection. Most of these functions are implemented directly within the controller hardware to optimize performance. The device is shipped in the configurations shown below.

Table 1: Configurations

User Capacity	NAND Flash Process	NAND Flash Density	Package Count	Die per BGA Package
350GB	25nm	32Gb	32	4
700GB	25nm	32Gb	32	8

Performance Specifications

Table 2: Performance Specifications

Specification	350GB	700GB	Unit
Sequential read (up to)	1.7	1.7	GB/s
Sequential write (up to)	310	500	MB/s
Random read (up to)	400,000	400,000	IOPS
Random write (up to)	24,000	51,000	IOPS
READ latency	≤100 (MIN)	≤100 (MIN)	μs
WRITE latency	≤15 posted (MIN)	≤15 posted (MIN)	μs

Notes: 1. Drive is erased and filled with zeroes to achieve preconditioned state .

2. 128KB transfers are used for sequential read/write values; 4KB transfers are used for random read/write values.

3. I/O performance numbers are measured in steady state using FIO with a preconditioned drive under RHEL 6.3 with a queue depth of 256 and with raw device access on systems with a single Intel Xeon E5-2667 2.90 GHz processor with 6 cores, 12 logical and hyper-threading enabled.

4. Steady state performance is defined as conforming to the SNIA V1.0 Performance Test Specification.

5. Performance numbers derived from tests at room temperature.

6. Latency performance numbers are measured using FIO with queue depth 1, random transfer, 4KB transfer size for READ latency, 4KB transfer size for WRITE latency.

7. Performance numbers are notated in base 10.

Functional Description

Data Retention

Data retention refers to the SSD's media (NAND Flash) capability to retain programmed data when the SSD is powered off. The two primary factors that influence data retention are degree of use (the number of PROGRAM/ERASE cycles on the media) and temperature.

The SSD provides power-off data retention of two months at 40°C (MAX) when total bytes written (TBW) is reached.

Micron RAIN Technology

Redundant array of independent NAND (RAIN) is a technology developed by Micron designed to extend the lifespan of the P420m.

Residing in the P420m ASIC controller, RAIN is similar to redundant array of independent disks (RAID) technology, but instead of grouping and striping disks, RAIN groups and stripes storage elements on the SSD across multiple channels, generating and storing parity data along with user data (one page of parity for every seven pages of user data). This data structure (user data plus parity) enables complete, transparent data recovery if a single storage element (NAND, page, block, or die) fails. If a failure occurs, the P420m automatically detects it and transparently rebuilds the data. During this RAIN rebuild process, the drive's performance is reduced temporarily but will recover after the rebuild process completes.

Wear Leveling

Wear leveling is a technique that spreads Flash block use over the entire memory array to equalize the PROGRAM/ERASE cycles on all blocks in the array. This helps to enhance the lifespan of the SSD. The P420m supports both static and dynamic wear leveling.

Static wear leveling considers all Flash blocks in the SSD regardless of data content or access and maintains an even level of wear across the drive. Dynamic wear leveling monitors available free space on the drive and dynamically moves data between Flash blocks to equalize wear on each block. Both techniques are used together within the controller to optimally balance the wear profile of the Flash array along with the drive's lifespan.

SMART Attribute Summary

Table 3: SMART Command Reference¹

Attribute ID	Hex ID	Name	SMART Trip	Description
9	0x09	Power-on hours count	No	Lifetime powered-on hours, from the time the device leaves the factory
12	0x0C	Power cycle count	No	Count of power cycles
170	0xAA	New failing block count	No	Grown defects
171	0xAB	Program fail count	No	Number of NAND program status failures
172	0xAC	Erase fail count	No	Number of NAND erase status failures
174	0xAE	Unexpected power loss count	No	Number of unexpected power-loss occurrences
187	0xBB	Reported uncorrecta- ble errors count	No	Number of ECC correction failures
188	0xBC	Command timeout count	No	Number of command timeouts, defined by an active command being interrupted by a HRESET, COMRESET, SRST, or other command
194	0xC2	Temperature	No	The on-die temperature sensor within the con- troller ASIC in degrees C, capturing the lifetime high and low temperatures measured
202	0xCA	Percentage of the rat- ed lifetime used	No	Cumulative erase count / lifetime erase count as expressed as a percent. Lifetime erase count is the total number of available blocks * block en- durance for the flash technology, read directly from the NAND device.
232	0xE8	Available reserved space	No	Percentage of spare blocks remaining Spare block count
241	0xF1	Power-on (minutes)	No	Lifetime power-on time in minutes
242	0xF2	Write protect progress	No	Progress toward WRITE PROTECT mode: reports 100% when the drive becomes read only

Note: 1. Attribute/Hex IDs are noted for distribution product. Specific OEMs may have different ID values, but the same list of SMART commands applies.

Logical Block Address Configuration

The number of logical block addresses (LBA) reported by the device ensures sufficient storage space for the specified density. Standard LBA settings based on the IDEMA standard (LBA1-02) are shown below.

Table 4: Standard LBA Settings

	Total LBA		Мах	User Available	
Drive Size	Decimal	Hexadecimal	Decimal	Hexadecimal	Bytes (Unformatted)
350GB	683,747,568	28C128F0	683,747,567	28C128EF	350,078,754,816
700GB	1,367,473,968	5181FF30	1,367,473,967	5181FF2F	700,146,671,616

Note: 1. 1GB = 1 billion bytes; user capacity.

Physical Configuration

Table 5: Nominal Dimensions and Weight

Specification	Value	Unit
Height	15.00	mm
Width	69.85	mm
Length	100.20	mm
Unit weight	142.9 (350GB) 145.15 (700GB)	g

Interface Connectors

The host interface connector conforms to the PCIe Electromechanical Specification V2.0, section 5, Table 5-1. It is a four-lane, gold-finger connector with 1mm pitch spacing.

A mechanical indent is used to separate the PCIe power pins from the differential signal contacts. The pins are numbered below in ascending order from left to right. Side B refers to component side and Side A refers to the solder side.

Туре	Drive	Usage	Signal Description	Name	Mating	Pin#
HS			Ground	GND	2nd	S1
HS	Input		DNU	SOT+(A+)	3rd	S2
HS	Input		DNU	SOT-(A-)	3rd	S3
HS			Ground	GND	2nd	S4
HS	Output		DNU	SOR-(B-)	3rd	S5
HS	Output		DNU	SOR+(B+)	3rd	S6
HS			Ground	GND	2nd	S7
LS	Input	Dual port	DNU	RefClk+1	3rd	E1
LS	Input	Dual port	SNU	RefClk+1	3rd	E2
LS	Input	PCI opt	3.3V for SM BUS	3.3 AUX	3rd	E3
LS	Input	Dual port	DNU	PCleRst1	3rd	E4
LS	Input	PCIe only	PCIe primary reset	PCIeRst0	3rd	E5
LS	Input	PCIe opt	Optional reserved Pin	Wake/RSVD	3rd	E6
Power	NC		DNU	3.3V	3rd	P1
	NC				3rd	P2
	NC				2nd	P3
		All	Hot plug	Ground	1st	P4
		All			2nd	P5
		All			2nd	P6
	NC		DNU	5V	2nd	P7
	NC				3rd	P8
	NC				3rd	P9
		All		Presence detect	2nd	P10
	LED	All		Activity/staggard spin- up	3rd	P11
		All	Hot plug	Ground	1st	P12
	Input	All	Only power for PCIe SSD	12V	2nd	P13
	Input	All			3rd	P14
	Input	All			3rd	P15
LS	Input	PCIe only	PCIe primary RefClk+	RefClk0+	3rd	E7
LS	Input	PCIe only	PCIe primary RefClk-	RefClk0-	3rd	E8

Table 6: PCIe Interface Connector Pin Assignments

PDF: 09005aef84adf86d p420m_2_5.pdf - Rev. U 8/14 EN

Туре	Drive	Usage	Signal Description	Name	Mating	Pin#
HS			Ground	GND		E9
HS	Input	PCIe only	PCIe 0 transmit +	POT+		E10
HS	Input	PCIe only	PCIe 0 transmit -	POT-		E11
HS			Ground	GND		E12
HS	Output	PCIe only	PCle 0 receive -	POR-		E13
HS	Output	PCIe only	PCle 0 receive +	POR+		E14
HS			Ground	GND		E15
LS		TBD	Reserve	RSVD		E16
HS			Ground	GND	2nd	S8
HS	Input		DNU	S1T+	3rd	S9
HS	Input		DNU	S1T-	3rd	S10
HS			Ground	GND	2nd	S11
HS	Output		DNU	S1R-	3rd	S12
HS	Output		DNU	S1R+	3rd	S13
HS			Ground	GND	2nd	S14
LS		TBD	Reserved	RSVD	3rd	E17
HS			Ground	GND	2nd	E18
HS	Input	PCIe+SAS	PCIe 1 transmit + / SAS 2 transmit +	P1T+/S2T+	3rd	E19
HS	Input	PCIe+SAS	PCle 1 transmit - / SAS 2 transmit -	P1T-/S2T-	3rd	E20
HS			Ground	GND	2nd	E21
HS	Output	PCIe+SAS	PCle 1 receive - / SAS 2 receive -	P1R-/S2R-	3rd	E22
HS	Output	PCIe+SAS	PCle 1 receive + / SAS 2 receive +	P1R+/S2R+	3rd	E23
HS			Ground	GND	2nd	E24
HS	Input	PCIe+SAS	PCIe 2 transmit + / SAS 3 transmit +	P2T+/S3T+	3rd	E25
HS	Input	PCIe+SAS	PCIe 2 transmit - / SAS 3 transmit -	P2T-/S3T-	3rd	E26
HS			Ground	GND	2rd	E27
HS	Output	PCIe+SAS	PCle 2 receive - / SAS 3 receive -	P2R-/S3R-	3rd	E28
HS	Output	PCIe+SAS	PCle 2 receive + / SAS 3 receive +	P2R+/S3R+	3rd	E29
HS			Ground	GND	2 rd	E30
HS	Input	PCIe only	PCIe 3 transmit +	P3T+	3rd	E31
HS	Input	PCIe only	PCle 3 transmit -	P3T-	3rd	E32
HS			Ground	GND	2nd	E33

Table 6: PCIe Interface Connector Pin Assignments (Continued)

PDF: 09005aef84adf86d p420m_2_5.pdf - Rev. U 8/14 EN

Table 6: PCIe Interface Connector Pin Assignments (Continued)

Туре	Drive	Usage	Signal Description	Name	Mating	Pin#
HS	Output	PCIe only	PCIe 3 receive -	P3R-	3rd	E34
HS	Output	PCIe only	PCIe 3 receive -	P3R+	3rd	E35
HS			Ground	GND	2nd	E36
LS	Bi-Dir	PCle opt	SM-Bus clock	SMClk	3rd	E37
LS	Bi-Dir	PCle opt	SM-Bus clock	SMData	3rd	E38
LS	Bi-Dir	Dual port	DNU	PCIeDualEn#	3rd	E39

Note: 1. Dual port is not supported.

PCIe Header

Figure 3: PCIe Header

31			C	Byte offset)
Device ID = 5161h		Vendor ID = 1344h		
Stat	us	Comma	nd	04h
(Class code = 018000h		Revision ID = 03h	08h
BIST	BIST Header type = 00h		Cache line size	0Ch
~			2	=
	Subsystem ID = 10xxh (350GB) Subsystem ID = 20xxh (700GB)		dor ID = 1344h	2Ch

Note: 1. Standard Distribution Subsystem ID is 1000h for 350GB and 2000h for 700GB. A nonzero value for xx indicates an OEM product.

Commands

Table 7: Supported ATA Command Set

See ATA-8 ACS-2 specification for command details

Commands	ATA Protocol	CMD Code	Feature Codes
CHECK POWER MODE	ND	0xE5	-
DEVICE CONFIGURATION FREEZE LOCK	ND	0xB1	0xC1
DEVICE CONFIGURATION IDENTIFY	PI	0xB1	0xC2
DEVICE CONFIGURATION RESTORE	ND	0xB1	0xC0
DEVICE CONFIGURATION SET	PO	0xB1	0xC3
DOWNLOAD MICROCODE	PO	0x92	-
EXECUTE DEVICE DIAGNOSTIC	DD	0x90	-
FLUSH CACHE	ND	0xE7	-
FLUSH CACHE EXT	ND	0xEA	-
IDENTIFY DEVICE	PI	0xEC	-
IDLE	ND	0xE3	-
IDLE IMMEDIATE	ND	0xE1	-
INITIALIZE DEVICE PARAMETERS	ND	0x91	-
READ BUFFER	PI	0xE4	-
READ DMA	DM	0xC8	_
READ DMA WO RETRIES	DM	0xC9	_
READ DMA EXT	PI	0x25	_
READ FPMDA QUEUED	NCQ	0x60	_
READ LOG EXT	PI	0x2F	-
READ MULTIPLE	PI	0xC4	_
READ MULTIPLE EXT	PI	0x29	_
READ NATIVE MAX ADDRESS	ND	0xF8	_
READ NATIVE MAX ADDRESS EXT	ND	0x27	-
READ SECTORS	PI	0x20	-
READ SECTORS WO RETRIES	PI	0x21	_
READ SECTORS EXT	PI	0x24	-
READ VERIFY SECTORS	ND	0x40	-
READ VERIFY SECTORS WO RETRIES	ND	0x41	_
READ VERIFY SECTOR EXT	ND	0x42	_
RECALIBRATE	ND	0x1x	-
SECURITY DISABLE PASSWORD	PO	0xF6	-
SECURITY ERASE PREPARE	ND	0xF3	-
SECURITY ERASE UNIT	PO	0xF4	-
SECURITY FREEZE LOCK	ND	0xF5	_
SECURITY SET PASSWORD	PO	0xF1	_
SECURITY UNLOCK	РО	0xF2	_

Table 7: Supported ATA Command Set (Continued)

See ATA-8 ACS-2 specification for command details

Commands	ATA Protocol	CMD Code	Feature Codes	
SEEK	ND	0x7x	-	
SET FEATURES	ND	0xEF	VARIOUS	
SET MAX ADDRESS	ND	0xF9	0x00	
SET NATIVE MAX ADDRESS EXT	ND	0x37	-	
SET MAX SET PASSWORD	ND	0xF9	0x01	
SET MAX LOCK	ND	0xF9	0x02	
SET MAX FREEZE LOCK	ND	0xF9	0x04	
SET MAX UNLOCK	ND	0xF9	0x03	
SET MULTIPLE MODE	ND	0xC6	-	
SLEEP	ND	0xE6	-	
SMART DISABLE OPERATIONS	ND	0xB0	0xD9	
SMART ENABLE/DISABLE AUTOSAVE	ND	0xB0	0xD2	
SMART ENABLE OPERATIONS	ND	0xB0	0xD8	
SMART EXECUTE OFF-LINE IMMEDIATE	ND	0xB0	0xD4	
SMART READ DATA / READ ATTRIBUTE VALUES	PI	0xB0	0xD0	
SMART READ LOG	PI	0xB0	0xD5	
SMART RETURN STATUS	ND	0xB0	0xDA	
SMART WRITE LOG	PO	0xB0	0xD6	
SMART READ ATTRIBUTE/WARRANTY THRESHOLDS	PI	0xB0	0xD1	
STANDBY	ND	0xE2	_	
STANDBY IMMEDIATE	ND	0xE0	_	
WRITE DMA	DM	0xCA	_	
WRITE DMA WO RETRIES	DM	0xCB	_	
WRITE DMA EXT	DM	0x35	_	
WRITE DMA FUA EXT	DM	0x3D	-	
WRITE FPDMA QUEUED	NCQ	0x61	-	
WRITE LOG EXT	PO	0x3F	-	
WRITE MULTIPLE	PO	0xC5	-	
WRITE MULTIPLE EXT	PO	0x39	-	
WRITE MULTIPLE FUA EXT	PO	0xCE	-	
WRITE SECTORS	PO	0x30	-	
WRITE SECTORS WO RETRIES	PO	0x31	-	
WRITE SECTORS EXT	PO	0x34	_	

Reliability

Micron's SSDs incorporate advanced technology for defect and error management. They use various combinations of hardware-based error correction algorithms and firmware-based static and dynamic wear-leveling algorithms.

Over the life of the SSD, uncorrectable errors may occur. An uncorrectable error is defined as data that is reported as successfully programmed to the SSD but when it is read out of the SSD, the data differs from what was programmed.

Table 8: Uncorrectable Bit Error Rate

Uncorrectable Bit Error Rate	Operation
< 1 sector per 10 ¹⁷ bits read	READ

Mean Time to Failure

The mean time to failure (MTTF) for the device was measured in a Reliability Demonstration Test at over 2 million hours.

Table 9: MTTF

Capacity	MTTF (Operating Hours)	
350GB	2 million	
700GB	2 11111011	

Endurance

Endurance for the SSD can be predicted based on the usage conditions applied to the device, the internal NAND component PROGRAM/ERASE cycles, the write amplification factor, and the wear-leveling efficiency of the drive. The table below shows the drive lifetime for each SSD capacity based on predefined usage conditions. The SSD implements wear leveling in hardware to optimize performance and efficiency while maintaining Flash endurance. The device also provides optional long-term wear management support.

Table 10: Drive Lifetime

Capacity	Workload	Drive Lifetime (Total Bytes Written)	Drive Fills Per Day	Retention
350GB	4KB 100% random writes	2.3PB	3.7 (5 years)	2 months
	128KB 100% sequential writes	4.85PB	7.6 (5 years)	2 months
700GB	4KB 100% random writes	4.6PB	3.7 (5 years)	2 months
	128KB 100% sequential writes	9.7PB	7.6 (5 years)	2 months

Power Holdup Protection

If power is interrupted at any time while data is being programmed into the NAND, it is possible that data loss may occur and the MLC NAND's lower page may become corrupted. This can cause drive errors to be reported to the host. To prevent these errors from occurring, the P420m drive implements an energy storage solution called a Power Holdup circuit that maintains power to the NAND while it is being programmed, even if power to the system is interrupted. By supporting Power Holdup, the P420m drive assures data integrity in the drive is preserved – preventing the loss of data and the reporting of drive errors to the host.

Electrical Characteristics

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 11: Operating Voltage and Power

Electrical Characteristic	Value
Voltage requirement	12Vdc (±8%)
Active power	25W RMS
Standby power (idle)	8W RMS (TYP), 10W RMS (MAX)

Table 12: Environmental Conditions

Parameter/Condition	Min	Max	Unit	Notes
Operating temperature (as indicated by SMART temperature)	0	85	°C	1
Operating ambient temperature	0	55	°C	2
Storage temperature (in system)	0	40	°C	3
Storage temperature (offline)	-40	85	°C	4
Operating airflow	1.0	-	m/s	5

Notes: 1. If SMART temperature exceeds 85°C, write performance is throttled.

2. Temperature of air impinging on the drive.

3. Assumes system is powered off and ready to be powered on.

4. Contact Micron for additional information.

5. Airflow must flow along the length of the drive, parallel to and through any cooling fins; 1.5m/s operating airflow is recommended.

Table 13: Shock and Vibration

Parameter/Condition	Specification	
Shock (nonoperational)	400g at 2ms half-sine, 150g at 10ms half-sine	
Vibration (nonoperational)	3.1 grms 5–800Hz at 30 min/axis	

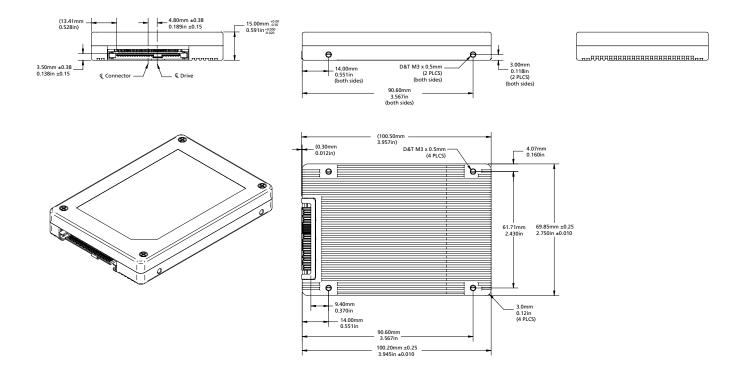
Compliance

The device complies with the following specifications:

- RoHS Restriction of Hazardous Substances
- China RoHS
- WEEE Waste Electric and Electronic Equipment
- Halogen Free meets IPC low-halogen requirements
- CE (Europe) EN55022/EN55024 (Class A)
- TUV (Germany) EN60950
- UL (US/Canada) EN60950
- FCC (US) 47CFR Part 15 Class A
- BSMI (Taiwan) CNS 13438 Class A
- VCCI (Japan) EN 55022/CISPR 22 Class A
- C-TICK (AUS/NZ) CISPR22
- ICES (Canada) CISPR22 Class A
- KC (Korea) EN55022/EN55024 Class A, KCC-REM-MU2-MTFDGALZZZMAX

FCC Rules

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.


References

- PCI Express Base Specification V2.1
- PCI Express CEM Specification V2.0
- ATA8-ACS2 Specification
- IDEMA Specification
- Telcordia SR-322 Procedures
- SNIA Performance Test Specification V1.0
- SFF-8639 Specification V1.0

Drive Dimensions

Figure 4: 2.5-Inch Dimensions

Revision History

Rev. U – 8/14	
	Updated custom drivers status
Rev. T – 7/14	
	Changed documentation status
Rev. S – 7/14	
	Updated custom drivers
Rev. R – 6/14	
	Updated signal descriptions in the PCIe Interface Connector Pin Assignments table
Rev. Q - 4/14	
	Status changed to Production
	• Status changed to Froduction
Rev. P – 3/14	
	Updated Compliance section
Rev. O – 2/14	
rev. 0 = 2/14	
	Updated Compliance and References sections
Rev. N – 1/14	
	Updated 12V power range
Rev. N – 1/14	
	Updated 12V power range
Rev. M – 1/14	
	Updated endurance and data retention specifications
	Updated performance specifications
	Updated electrical specifications
	Updated temperature specifications and notes
	Updated custom drivers Updated Figure 1: Port Number Chart
	Updated Figure 1: Part Number ChartUpdated Compliance and References sections
	- Optiated Compliance and References sections
Rev. L – 10/13	
	Updated temperature specifications and notes

Rev. K – 10/13	
	Updated custom drivers list
	Updated pin assignment descriptions
Rev. J – 9/13	
	Updated custom drivers list
Rev. I – 7/13	
	Updated note 3 in Performance Specifications section
Rev. H – 6/13	
	Added power values
Rev. G – 4/13	
	Updated Part Number chart
	Updated supported drivers
	Added drive dimensions drawing
Rev. F – 3/13	
	Updated power and WRITE latency values
	 Updated supported drivers
Rev. E – 2/13	
	Updated Functional Description section
Rev. D – 12/12	
	 Updated capacity values and corresponding specifications
Rev. C – 8/12	
	 Updated capacity values and corresponding specifications
Rev. B – 6/12	
	Added Power Holdup Protection
	Changed Device ID and updated Subsystem ID in Figure 3
Rev. A – 3/12	
	Initial release; Preliminary status
	8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992
	Micron and the Micron logo are trademarks of Micron Technology, Inc.
	All other trademarks are the property of their respective owners. inimum and maximum limits specified over the power supply and temperature range set forth herein. ese specifications are subject to change, as further product development and data characterization some-

times occur.