ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FSA839 — Low-Voltage, 0.8Ω SPDT Analog Switch with Power-Off Isolation

Features

- Pow er-Off Isolation (V_{CC}=0 V)
- 0.8 Ω Maximum On Resistance (R_{ON}) for 4.5 V V_{CC}
- 0.25 Ω Maximum R_{ON} Flatness for 4.5 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Fast Turn-On and Turn-Off Times
- Control Input Sw itching Thresholds Independent of V_{CC}
- Break-Before-Make Enable Circuitry
- 0.4 mm WLCSP Packaging
- ESD Performance

HBM per JESD22-A114, VO to GND: 8 kV
 CDM per JESD22-C101: 500 V
 IEC61000-4-2 Contact / Air: 8 kV / 15 kV

Applications

- Cellular Phone
- Portable Media Player
- PDA

Description

The FSA839 is a high-performance Single-Pole / Double-Throw (SPDT) analog switch for audio applications driven by low-voltage (1.8 V) baseband processors or ASICs. The device features ultra-low R_{ON} of $0.8\,\Omega$ (maximum) at 4.5 V V_{CC} and operates over the wide V_{CC} range of 1.65 V to 5.5 V. The device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation.

The FSA839 interfaces between the low-voltage ASIC and regular audio amplifiers and CODECs operating up to a 5.5 V supply range. The control circuitry allows for 1.8 V (typical) signals on the control pin (Sel).

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA839UCX	-40°C to +85°C	N3	6-Ball WLCSP, 0.4 mm Pitch	Tape and Reel

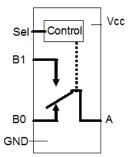


Figure 1. Analog Symbol

Marking Information

KK = Lot Run Code

X = Year

Y = Work WeekZ = Assembly Site

Figure 2. Top Mark with Pin 1 Orientation

Ball Configuration

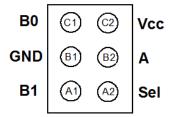


Figure 3. Pin Assignments (Bottom View)

Ball Definitions

Ball	Name	Description
A1	B1	Data Port (Normally Open)
B1	GND	Ground
C1	В0	Data Ports (Normally Closed)
C2	V _{cc}	Supply Voltage
B2	А	Common Data Port
A2	Sel	Control Input

Truth Table

Control Input (Sel)	Function			
LOW	B0 connected to A			
HIGH	B1 connected to A			

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.5	6.5	V
V _{SW}	Sw itch Voltage ⁽¹⁾		-0.5	V _{CC} + 0.5	V
V _{IN}	Input Voltage ⁽¹⁾		-0.5	6.5	V
I _{IK}	Input Diode Current			-50	mA
I _{SW}	Sw itch Current (Continuous)			200	mA
I _{SWPEAK}	Peak Sw itch Current (Pulsed at 1 ms Duration, <10%	Peak Sw itch Current (Pulsed at 1 ms Duration, <10% Duty Cycle)			
P_D	Pow er Dissipation at 85°C	Pow er Dissipation at 85°C			
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
T _L	Lead Temperature (Soldering, 10 Seconds)			+260	°C
	Human Body Model / IEDEC: IESD22 A444)	I/O to GND: A		8	kV
	Human Body Model (JEDEC: JESD22-A114)	All Pins		2	KV
	Charged Device Model (JEDEC: JESD22-C101)			500	V
ESD	Machine Model (JEDEC: JESD22-A115)			100	V
	IEC6100-4-2 Discharge System Test Performed on		8		
	ON Semiconductor's FSA859 Applications Testing Board	Air	_	15	kV

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Supply Voltage	1.65	5.50	V
SEL	Control Input Voltage	0	1.95	V
V _{sw}	Sw itch Input Voltage	0	V _{cc}	V
T_A	Operating Temperature	-40	+85	°C
θ_{JA}	Thermal Resistance, Still Air		350	°C/W

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbo	Parameter	V _{cc} (V)	Conditions	т	_=+25°	°C	T _A =-4 +85		Unit	
ı				Min.	Тур.	Max.	Min.	Max.		
V _{IH}	Input Voltage High	1.65 to 5.50					1.0		V	
V_{IL}	Input Voltage Low	1.65 to 5.50						0.57	V	
I _{IN}	Control Input Leakage	1.95 to 5.50	V _{Sel} =0	-2		2	-20	20	nA	
		5.50	A=1 V, 4.5 V B0 or B1=4.5, 1 V	-10		10	-50	50		
I _{NO(0FF),}	Off-Leakage Current	3.60	A=1 V, 3.0V B0 or B1=3.0, 1V	-10		10	-50	50	^	
I _{NC(OFF)} ,	of Port B0 and B1 ⁽⁵⁾	2.70	A=0.5 V, 2.3 V B0 or B1=2.3, 0.5V	-10		10	-50	50	nA	
		1.95	A=0.3 V, 1.65 V B0 or B1=1.65 ,0.3 V	-5		5	-20	20		
	I _{NO(On)}		5.50	A=Floating B0 or B1=4.5, 1V	-20		20	-100	100	
		On-Leakage Current	3.60	A=Floating B0 or B1=3.0, 1 V	-10		10	-20	20	
	of Port B0 and B1 ⁽⁵⁾	2.70	A=Floating B0 or B1=2.3, 0.5 V	-10		10	-20	20	nΑ	
		1.95	A=Floating B0 or B1=1.65, 0.3 V	-5		5	-20	20		
		5.50	A=1 V, 4.5 V; B0 or B1=1 V, 4.5 V, or Floating	-20		20	-100	100		
	On Lookaga Current	3.60	A=1V, 3.0VB0 or B1=1V, 3.0V, or Floating	-10		10	-20	20		
I _{A(ON)}	On Leakage Current of Port A ⁽⁵⁾	2.70	A=0.5 V, 2.3 V, B0 or B1=0.5 V, 2.3 V, or Floating	-10		10	-20	20	nA	
		1.95	A=0.3 V, 1.65 V; B0 or B1=0.3 V, 1.65 V, or Floating	-5		5	-20	20		
l _{OFF}	Pow er Off Leakage Current of Port A & Port B ⁽⁵⁾	0	A=0 to 5.5 V B0 or B1=0 to 5.5 V	-1.00	0.01	1.00	-5.00	5.00	μΑ	
R_{PD}	Sel Internal Pull- Down Resistor	1.65 to 1.95			2.0				MΩ	
l _{cc}	Quiescent Supply Current	5.50	V_{IN} , V_{SEL} =0 or V_{CC} , I_{OUT} =0			100		500	nA	

3.60	$V_{IN}, V_{SEL} = 0 \text{ or } V_{CC},$ $I_{OUT} = 0$		75	300	
2.70	V _{IN} , V _{SEL} =0 or V _{CC} , I _{OUT} =0		50	250	
1.95	V_{IN} , V_{SEL} =0 or V_{CC} , I_{OUT} =0		25	150	

Continued on the following page...

DC Electrical Characteristics (Continued)

All typical values are at 25°C unless otherwise specified.

Symbo	D	V 00	O a malitia ma		T _A =+25°	С	T _A =-40 to	+85°C	1121
Ĭ	Parameter	V _{cc} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Unit
		5.50	V _{Sel} = 1.8 V		26	40		50	
	Increase in I _{CC} per Control Input	3.60	V _{Sel} = 1.8 V		5	15		20	
CCT		2.70	V _{Sel} = 1.8 V		1	5		10	μA
		1.95	V _{Sel} = 1.8 V		0.01	1.00		3.00	
lccz	Supply Current Sleep	5.50	V _{IN} , V _{Sel} = Floating			0.5		1.0	μΑ
		4.50	l _{OUT} =-100 mA, B0 or B1=2.5 V		0.50	0.75		0.80	
D	Sw itch On	3.00	l _{OUT} =-100 mA, B0 or B1=2.0 V		0.75	0.90		1.20	Ω
R _{ON}	Resistance ^(2,5)	2.25	l _{OUT} =-100 mA, B0 or B1=1.8 V		1.0	1.3		1.6	12
		1.65	l _{OUT} =-100 mA, B0 or B1=1.2 V		2.5	5.0		7.0	
		4.50	l _{OUT} =-100 mA, B0 or B1=2.5 V		0.05	0.10		0.10	
A D	On Resistance Matching	3.00	l _{OUT} =-100 mA, B0 or B1=2.0 V		0.10	0.15		0.15	Ω
∆ R _{ON}	Betw een Channels ^(3,5)	2.25	l _{OUT} =-100 mA, B0 or B1=1.8 V		0.15	0.20		0.20	12
		1.65	l _{OUT} =-100 mA, B0 or B1=1.2 V		0.15	0.40		0.40	
		4.50	l _{OUT} =-100 mA, B0 or B1=1.0V, 1.5 V, 2.5 V		0.075	0.250		0.250	
Б	On Resistance	3.00	l _{OUT} =-100 mA, B0 or B1=0.8 V, 2.0 V		0.1	0.3		0.3	Ω
R _{FLAT (ON)}	Flatness ^(4,5)	2.25	l _{OUT} =-100 mA, B0 or B1=0.8 V, 1.8 V		0.25	0.50		0.60	22
			I _{OUT} =-100mA, B0 or B1=0.6 V, 1.2 V		3.5				

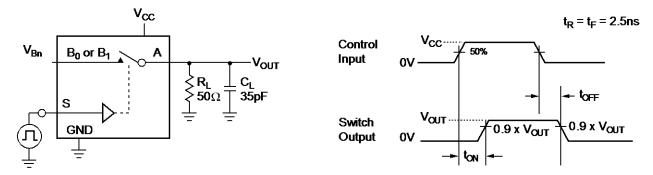
Notes:

- 2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 3. $\Delta R_{ON} = R_{ON}$ maximum R_{ON} minimum; measured at identical V_{CC} , temperature, and voltage.
- 4. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
- 5. Guaranteed by characterization, not production tested for V_{CC} =1.65 1.95 V.

AC Electrical Characteristics

All typical value are at V $_{\rm CC}$ =1.8 V, 2.5 V, 3.0 V, and 5.0 V at 25 $^{\circ}$ C unless otherwise specified.

Symbo	Paramete	V (V)	Conditions	7	Γ _A =+25	°C		40 to 5°C	Unit	Figur
ı	r	V _{cc} (V)	Conditions	Min	Тур.	Max.	Min.	Max.	Oilit	е
		4.50 to 5.50		1.0	12.0	25.0	1.0	30.0		
	Turn-On	3.00 to 3.60	B0 or B1=V _{CC} ,	5.0	15.0	30.0	3.0	35.0		5
t _{ON}	Time ⁽⁶⁾	2.30 to 2.70	R_L =50 Ω, C_L =35 pF	5.0	20.0	35.0	5.0	40.0	ns	Figure 4
		1.65 to 1.95] -	10.0	50.0	70.0	10.0	75.0		
		4.50 to 5.50		1.0	9.5	20.0	1.0	25.0		
	Turn-Off	3.00 to 3.60	B0 or B1=V _{CC} ,	1.0	9.0	20.0	1.0	25.0		
t _{OFF}	Time ⁽⁶⁾	2.30 to 2.70	R_L =50 Ω , C_L =35 pF	2.0	10.0	20.0	2.0	25.0	ns	Figure 4
		1.65 to 1.95		2.0	28.0	40.0	2.0	50.0		
		4.50 to 5.50		1.0	10.0	12.0	0.1	14.0		
	Break-	3.00 to 3.60	B0 or B1=V _{CC} /2,	1.0	14.0	16.0	1.0	17.0	ns	Figure 5
t _{BBM}	Before-Make Time ⁽⁷⁾	2.30 to 2.70	R_L =50 Ω, C_L =35 pF	1.0	21.0	25.0	1.0	27.0		
		1.65 to 1.95]		35.0		2.0	50.0		
		5.50			70					Figure 7
Q	Charge	3.30	C_L =1.0 nF, V_{GEN} =0 V,		40				рС	
Q	Injection	2.50	$R_{GEN}=0 \Omega$		30					
		1.65			10					
OIRR	Off Isolation	1.8 to 5.0	f=1 MHz, $R_L=50$ Ω		-55				dB	Figure 6
Xtalk	Crosstalk	1.8 to 5.0	f=1 MHz, R _L =50 Ω		55				dB	Figure 6
		5.50			60					
BW	-3 db	3.30	R _L =50 Ω		60				MHz	Figure 9
DVV	Bandw idth	2.50	N _L =50 Ω		55				IVII IZ	Figure 9
		1.65			50					
	Total	1.80	R_L =600 Ω , V_{IN} =0.5 V_{PP} ,		.02					Figure
THD	Harmonic Distortion	5.00	f=20 Hz to 20 kHz		.001				%	10
PSRR	Pow er Supply Rejection Ratio	3.3	f=217 Hz on V _{CC} at 500 mvpp		-23				dB	Figure 11


Notes:

- 6. Guaranteed by characterization, not production tested for V_{CC} =1.65 1.95 V.
- 7. Guaranteed by characterization, not production tested.

Capacitance

Symbo	Parameter	V (\(\)	Conditions	٦	Unit		
I	Farameter	V _{cc} (V)	cc (V) Conditions		Тур.	Max.	Offic
C_{IN}	Control Pin Input Capacitance	0	f=1 MHz		3.2		pF
C_{OFF}	B Port Off Capacitance	1.65 to 5.50	f=1 MHz		50		pF
C _{ON}	A Port On Capacitance	1.65 to 5.50	f=1 MHz		150		pF

Test Diagrams

C_L includes fixture and stray capacitance.

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 4. Turn On / Off Timing

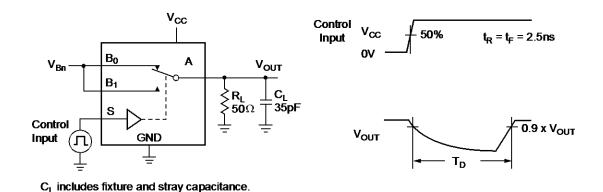


Figure 5. Break-Before-Make Timing

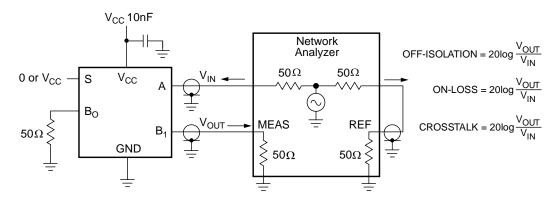


Figure 6. Off Isolation and Crosstalk

Test Diagrams (Continued)

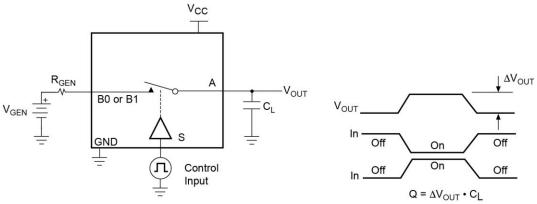


Figure 7. Charge Injection

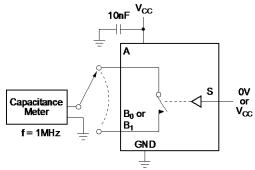


Figure 8. On / Off Capacitance Measurement Setup

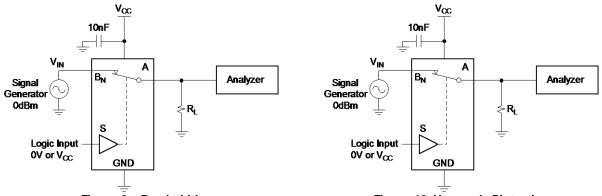
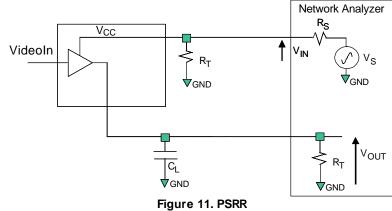
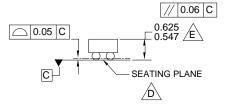
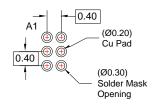



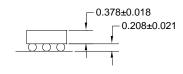
Figure 9. Bandwidth

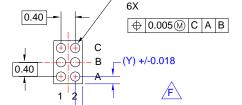
Figure 10. Harmonic Distortion


Product Specific Dimensions

Product	D	E	X	Y
FSA839UCX	1.160 ±.030	0.760 ±.030	0.180	0.180


Physical Dimensions


TOP VIEW



SIDE VIEWS

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

_(X) +/-0.018

Ø0.260±0.010

BOTTOM VIEW

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASMEY14.5M, 1994.
- DATUM C, THE SEATING PLANE IS DEFINED
 BY THE SPHERICAL CROWNS OF THE BALLS.
- E PACKAGE TYPICAL HEIGHT IS 586 MICRONS ±39 MICRONS (547-625 MICRONS).
- F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
- G. DRAWING FILENAME: UC006ACrev4.

Figure 12. 6-Ball, WLCSP 0.4 mm Pitch

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employ

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll

Free

USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local

Sales Representative