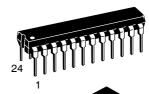

Octal Transceiver/Register with 3-State Outputs (Non-inverting)

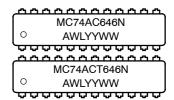
The MC74AC646/74ACT646 consist of registered bus transceiver circuits, with outputs, D-type flip-flops and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CAB or CBA). The four fundamental data handling functions available are illustrated Figures 1 to 4.

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data Transfers
- Choice of True and Inverting Data Paths
- 3-State Outputs
- 300 mil Slim Dual In-Line Package
- Outputs Source/Sink 24 mA
- 'ACT646 Has TTL Compatible Inputs
- These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.



ON Semiconductor™

http://onsemi.com



PDIP-24 N SUFFIX CASE 724

MARKING DIAGRAMS

PDIP-24

SO-24

= Assembly

Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping								
MC74AC646N	PDIP-24	15 Units/Rail								
MC74ACT646N	PDIP-24	15 Units/Rail								
MC74AC646DW	SOIC-24	30 Units/Rail								
MC74AC646DWR	SOIC-24	1000 Tape & Reel								
MC74ACT646DW	ACT646DW SOIC-24									
MC74ACT646DWR2	SOIC-24	1000 Tape & Reel								

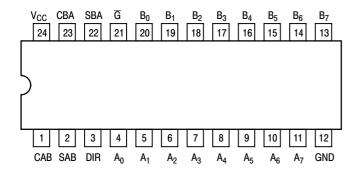


Figure 5. Pinout: 24-Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION
A ₀ -A ₇	Data Register Inputs Data Register A Outputs
B ₀ -B ₇	Data Register B Inputs Data Register B Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs
DIR, G	Output Enable Inputs

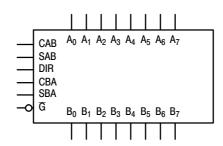



Figure 6. Logic Symbol

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 7. Logic Diagram

FUNCTION TABLE

Inputs						Data	I/O*	Operation or Function
G	DIR	CAB	CBA	SAB	SBA	A ₀ -A ₇	B ₀ -B ₇	Operation or Function
H H	X X	H or L	H or L	X X	X X	Input	Input	Isolation Store A and B Data
L L	L L	X X	X X	X X	L H	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus
L L	H H	X H or L	X X	L H	X X	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus

^{*}The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.

NOTE: H = HIGH Voltage Level; L = LOW Voltage Level; X = Immaterial; Γ = LOW-to-HIGH Transition

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
.,	O and Millians	'AC	2.0	5.0	6.0	
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	0./
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
TJ	Junction Temperature (PDIP)	•	-	-	140	°C
T _A	Operating Ambient Temperature Range		-40	25	85	°C
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current - Low		-	-	24	mA

^{1.} V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

	Parameter		74.	AC	74AC		
Symbol		V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits	1	
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	٧	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	٧	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA $I_{OH} -24 \text{ mA}$ -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	٧	Ι _{ΟυΤ} = 50 μΑ
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
I _{OZT}	Maximum 3-State Current	5.5	-	±0.6	±6.0	μΑ	V_{I} (OE) = V_{IL} , V_{IH} V_{I} = V_{CC} , GND V_{O} = V_{CC} , GND
I _{OLD}	†Minimum Dynamic	5.5	-	_	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	_	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test. \dagger Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay Clock to Bus	3.3 5.0	4.0 2.5	10.5 7.5	16.5 12	3.0 2.0	18.5 13	ns	3–6
t _{PHL}	Propagation Delay Clock to Bus	3.3 5.0	3.0 2.0	9.5 6.5	14.5 10.5	2.5 1.5	16 11.5	ns	3–6
t _{PLH}	Propagation Delay Bus to Bus	3.3 5.0	2.5 1.5	7.5 5.0	12 8.0	2.0 1.0	13.5 9.0	ns	3–5
t _{PHL}	Propagation Delay Bus to Bus	3.3 5.0	1.5 1.5	7.5 5.0	12.5 9.0	1.5 1.0	13.5 9.5	ns	3–5
^t PLH	Propagation Delay SBA or SAB to A_n or B_n (w/ A_n or B_n HIGH or LOW)	3.3 5.0	2.0 1.5	8.5 6.0	13.5 10	1.5 1.5	15.5 11	ns	3-6
t _{PHL}	Propagation Delay SBA or SAB to A_n or B_n (w/ A_n or B_n HIGH or LOW)	3.3 5.0	1.5 1.5	8.5 6.0	13.5 10	1.5 1.5	15 11	ns	3–6
t _{PZH}	Enable Time \overline{G} to A_n or B_n	3.3 5.0	2.5 1.5	7.0 5.0	11.5 8.5	2.0 1.5	12.5 9.0	ns	3–7
t _{PZL}	Enable Time G to A _n or B _n	3.3 5.0	2.5 1.5	7.5 5.5	12.5 9.0	2.0 1.5	14 10	ns	3–8
t _{PHZ}	Disable Time G to A _n or B _n	3.3 5.0	3.0 2.0	8.0 6.5	12.5 10	2.5 2.0	13.5 11	ns	3–7
t _{PLZ}		3.3 5.0	2.0 1.5	7.5 6.0	12 9.5	2.0 1.5	13.5 10.5	ns	3–8
t _{PZH}	Enable Time DIR to A _n or B _n	3.3 5.0	2.0 1.5	6.5 5.0	11 7.5	1.5 1.0	12 8.5	ns	3–7
t _{PZL}	Enable Time DIR to A _n or B _n	3.3 5.0	2.5 1.5	7.0 5.0	11.5 8.0	2.0 1.0	13 9.0	ns	3–8
t _{PHZ}	Disable Time DIR to A _n or B _n	3.3 5.0	2.5 1.5	7.5 5.5	11.5 9.5	1.5 1.5	12.5 10	ns	3–7
t _{PLZ}	Disable Time DIR to A _n or B _n	3.3 5.0	1.5 1.5	7.5 5.5	12 9.5	1.5 1.5	13.5 10.5	ns	3–8

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

				74AC	74AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF		= +25°C = 50 pF		Fig. No.
			Тур	Guaranteed	d Minimum		
t _s	Setup Time, HIGH or LOW Bus to Clock	3.3 5.0	2.0 1.5	5.0 4.0	5.5 4.5	ns	3–9
t _h	Hold Time, HIGH or LOW Bus to Clock	3.3 5.0	-1.5 -0.5	0 0.5	0 1.0	ns	3–9
t _w	Clock Pulse Width HIGH or LOW	3.3 5.0	2.0 2.0	3.5 3.5	4.5 3.5	ns	3–6

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74	CT	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} - 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5	- -	3.86 4.86	3.76 4.76	V	$^{*V_{IN}} = V_{IL} \text{ or } V_{IH} \\ -24 \text{ mA} \\ I_{OH} -24 \text{ mA}$
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5	- -	0.36 0.36	0.44 0.44	V	$^{*V}_{IN} = V_{IL} \text{ or } V_{IH} \\ 24 \text{ mA} \\ I_{OL} \qquad 24 \text{ mA}$
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
Δl _{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
I _{OZT}	Maximum 3-State Current	5.5	-	±0.6	±6.0	μΑ	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$
I _{OLD}	†Minimum Dynamic	5.5	-	_	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	_	-75	mA	V _{OHD} = 3.85 V Min
Icc	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

	Parameter	V _{CC} * (V)		74ACT		74ACT			
Symbol			T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay Clock to Bus	5.0	3.5	12.0	14.5	3.0	16.0	ns	3–6
t _{PHL}	Propagation Delay Clock to Bus	5.0	4.0	12.0	14.5	3.5	16.0	ns	3–6
t _{PLH}	Propagation Delay Bus to Bus	5.0	3.0	8.5	11.0	2.5	12.0	ns	3–5
t _{PHL}	Propagation Delay Bus to Bus	5.0	2.5	8.5	11.0	2.0	12.0	ns	3–5
t _{PLH}	Propagation Delay SBA or SAB to A_n or B_n (w/ A_n or B_n HIGH or LOW)	5.0	3.0	9.5	12.0	2.5	13.0	ns	3–6
t _{PHL}	Propagation Delay SBA or SAB to A_n or B_n (w/ A_n or B_n HIGH or LOW)	5.0	3.0	9.5	12.0	2.5	13.0	ns	3–6
t _{PZH}	Enable Time \overline{G} to A_n or B_n	5.0	2.0	9.0	11.0	1.5	12.0	ns	3–7
t _{PZL}	Enable Time \overline{G} to A_n or B_n	5.0	3.5	9.0	11.0	3.0	12.0	ns	3–8
t _{PHZ}	Disable Time \overline{G} to A_n or B_n	5.0	5.0	10.5	13.0	4.5	14.5	ns	3–7
t _{PLZ}	Disable Time \overline{G} to A_n or B_n	5.0	3.5	10.0	12.5	3.0	14.0	ns	3-8
t _{PZH}	Enable Time DIR to A _n or B _n	5.0	2.0	6.5	12.5	1.5	13.5	ns	3–7
t _{PZL}	Enable Time DIR to A _n or B _n	5.0	3.5	6.5	12.5	3.0	13.5	ns	3–8
t _{PHZ}	Disable Time DIR to A _n or B _n	5.0	5.0	8.5	12.5	4.5	13.5	ns	3–7
t _{PLZ}	Disable Time DIR to A _n or B _n	5.0	3.5	8.5	12.5	3.0	13.5	ns	3–8

^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

	Parameter	V _{CC} * (V)		74ACT	74ACT	Unit	Fig. No.
Symbol			T,	_A = +25°C _L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF		
			Тур	Guarantee			
t _s	Setup Time, HIGH or LOW Bus to Clock	5.0	-	7.0	8.0	ns	3–9
t _h	Hold Time, HIGH or LOW Bus to Clock	5.0	-	2.5	2.5	ns	3–9
t _w	Clock Pulse Width HIGH or LOW	5.0	-	7.0	8.0	ns	3–6

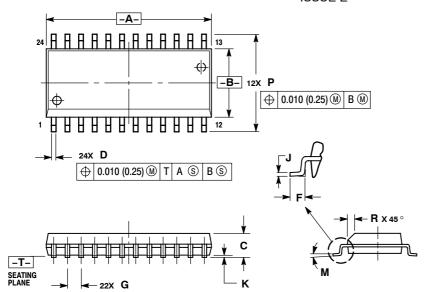

^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{I/O}	Input/Output Capacitance	15	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	60	pF	V _{CC} = 5.0 V

PACKAGE DIMENSIONS

PDIP-24 **N SUFFIX** 24 PIN PLASTIC DIP PACKAGE CASE 724-03 ISSUE D



- NOTES:
 1. CHAMFERED CONTOUR OPTIONAL.
 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 3. DIMENSIONING AND TOLERANCING PER ANSI

 - Y14.5M, 1982.
 4. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.230	1.265	31.25	32.13
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.020	0.38	0.51
Е	0.050 BSC		1.27 BSC	
F	0.040	0.060	1.02	1.52
G	0.100 BSC		2.54 BSC	
J	0.007	0.012	0.18	0.30
K	0.110	0.140	2.80	3.55
L	0.300 BSC		7.62 BSC	
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

SO-24 **DW SUFFIX** 24 PIN PLASTIC SOIC PACKAGE CASE 751E-04 **ISSUE E**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	15.25	15.54	0.601	0.612
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27 BSC		0.050 BSC	
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M	0 °	8°	0 °	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

MC74AC646/D