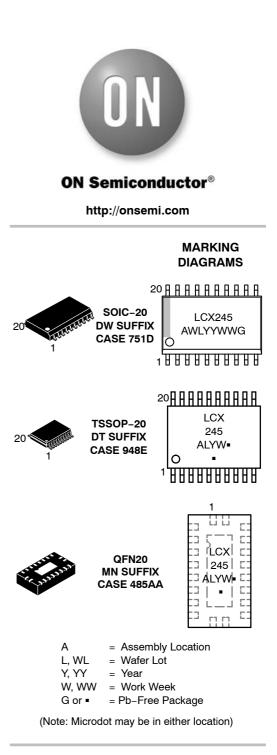
Low-Voltage CMOS Octal Transceiver


With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

The MC74LCX245 is a high performance, non-inverting octal transceiver operating from a 2.0 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX245 inputs to be safely driven from 5 V devices if V_{CC} is less than 5.0 V. The MC74LCX245 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Current drive capability is 24 mA at both A and B ports. The Transmit/Receive (T/\overline{R}) input determines the direction of data flow through the bi-directional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

Features

- Designed for 2.0 to 5.5 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2012 October, 2012 – Rev. 11

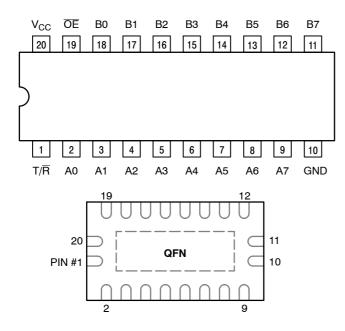


Figure 1. Pinout (Top View)

PIN NAMES

PINS	FUNCTION
ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
A0-A7	Side A 3-State Inputs or 3-State Outputs
B0-B7	Side B 3–State Inputs or 3–StateOutputs

TRUTH TABLE

INF	PUTS	OPERATING MODE		
ŌĒ	T/R	Non-Inverting		
L	L	B Data to A Bus		
L	Н	A Data to B Bus		
н	х	Z		

H = High Voltage Level

L = Low Voltage Level

Z = High Impedance State

X = High or Low Voltage Level and Transitions are Acceptable For I_{CC} reasons, Do Not Float Inputs

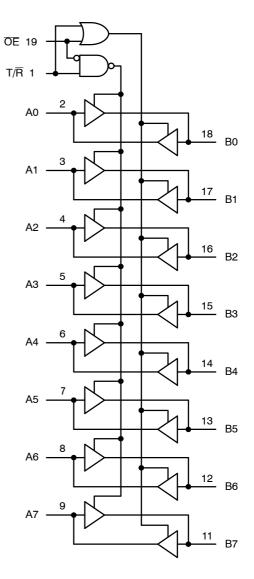


Figure 2. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \leq V_I \leq +7.0$		V
Vo	DC Output Voltage	$-0.5 \leq V_O \leq +7.0$	Output in 3-State	V
		$-0.5 \leq V_O \leq V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
IO	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	–65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	5.5 5.5	V
VI	Input Voltage		0		5.5	V
Vo	Output Voltage	(HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current	$\begin{array}{l} V_{CC} = 3.0 \ V - 3.6 \ V \\ V_{CC} = 2.7 \ V - 3.0 \ V \\ V_{CC} = 2.3 \ V - 2.7 \ V \end{array}$			- 24 - 12 - 8	mA
I _{OL}	LOW Level Output Current	$\begin{array}{l} V_{CC} = 3.0 \ V - 3.6 \ V \\ V_{CC} = 2.7 \ V - 3.0 \ V \\ V_{CC} = 2.3 \ V - 2.7 \ V \end{array}$			+ 24 + 12 + 8	mA
T _A	Operating Free-Air Temperature		-55		+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate, V_{IN} from	0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

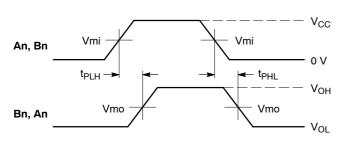
			T _A = −55°C	to +125°C	
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage (Note 2)	$2.3~\text{V} \leq \text{V}_{CC} \leq 2.7~\text{V}$	1.7		V
		$2.7~\text{V} \leq \text{V}_{CC} \leq 3.6~\text{V}$	2.0		
V _{IL}	LOW Level Input Voltage (Note 2)	$2.3~\text{V} \leq \text{V}_{CC} \leq 2.7~\text{V}$		0.7	V
		$2.7~V \leq V_{CC} \leq 3.6~V$		0.8	
V _{OH}	HIGH Level Output Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA	V _{CC} – 0.2		V
		$V_{CC} = 2.3 \text{ V}; \text{ I}_{OH} = -8 \text{ mA}$	1.8		
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{OH} = -12 \text{ mA}$	2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		
V _{OL}	LOW Level Output Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA		0.2	V
		$V_{CC} = 2.3 \text{ V}; \text{ I}_{OL} = 8 \text{ mA}$		0.6	
		V_{CC} = 2.7 V; I_{OL} = 12 mA		0.4	
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 16 \text{ mA}$		0.4	
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 24 \text{ mA}$		0.55	
I _{OZ}	3-State Output Current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \; V, \; V_{IN} = V_{IH} \; \text{or} \; V_{IL}, \\ V_{OUT} = 0 \; \text{to} \; 5.5 \; V \end{array}$		±5	μA
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μA
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μA
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μA

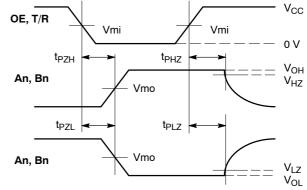
2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS t_R = t_F = 2.5 ns; R_L = 500 Ω

			Limits								
				T _A = −55°C to +125°C							
			V _{CC} = 3.3	$V \pm 0.3V$	V _{CC} =	2.7 V	V _{CC} = 2.5	$V \pm 0.2V$	V _{CC} =	5.0 V	
			C _L = 5	50 pF	C _L = 5	50 pF	C _L = 3	30 pF	C _L = 5	50 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	7.0 7.0	1.5 1.5	8.0 8.0	1.5 1.5	8.4 8.4	1.5 1.5	5.0 5.0	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	1.5 1.5	7.0 7.0	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	7.5 7.5	1.5 1.5	8.5 8.5	1.5 1.5	9.0 9.0	1.5 1.5	6.0 6.0	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0		1.0 1.0		1.0 1.0		1.0 1.0	ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

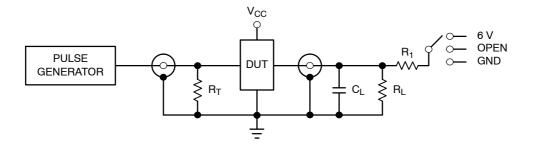

DYNAMIC SWITCHING CHARACTERISTICS


			T,	_A = +25°	С	
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	$ \begin{array}{l} V_{CC} = 3.3 \text{ V}, \ C_L = 50 \text{ pF}, \ V_{IH} = 3.3 \text{ V}, \ V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V}, \ C_L = 30 \text{ pF}, \ V_{IH} = 2.5 \text{ V}, \ V_{IL} = 0 \text{ V} \end{array} $		0.8 0.6		V V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	$ \begin{array}{l} V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V} \\ V_{CC} = 2.5 \text{V}, C_L = 30 \text{pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V} \end{array} $		-0.8 -0.6		V V

 Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF



WAVEFORM 1 – PROPAGATION DELAYS $t_{B} = t_{F} = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_{W} = 500 \text{ ns}$

WAVEFORM 2 – OUTPUT ENABLE AND DISABLE TIMES $t_B = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns

r							
		V _{CC}					
Symbol	3.3 V ± 0.3 V	2.7 V	2.5 V ± 0.2 V	5.0 V			
Vmi	1.5 V	1.5 V	V_{CC} /2	V_{CC} /2			
Vmo	1.5 V	1.5 V	V_{CC} /2	V_{CC} /2			
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V			
V _{LZ}	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V			

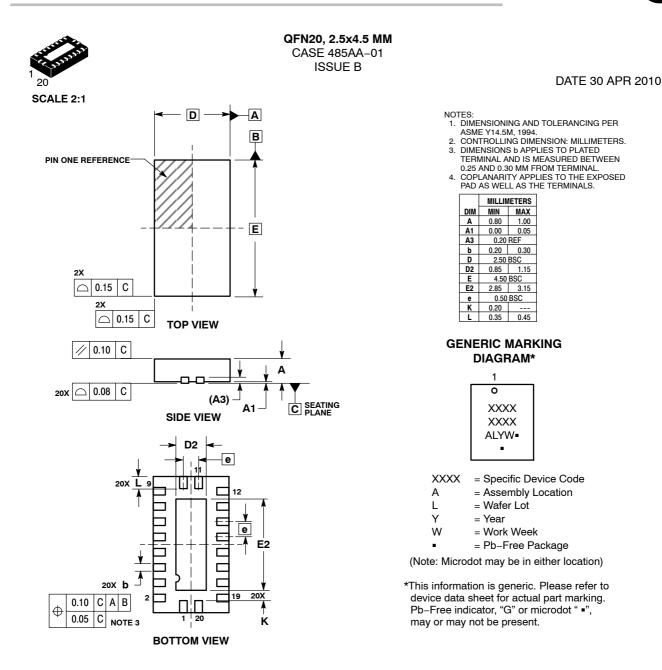
Figure 3. AC Waveforms

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
tpzL, tpLZ	6 V at V _{CC} = 3.3 \pm 0.3 V 6 V at V _{CC} = 2.5 \pm 0.2 V
Open Collector/Drain t_{PLH} and t_{PHL}	6 V
t _{PZH} , t _{PHZ}	GND

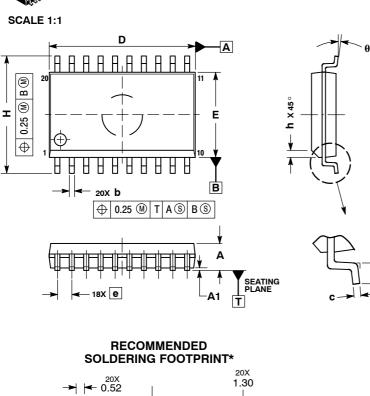
 C_L = 50 pF at V_{CC} = 3.3 \pm 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 \pm 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent

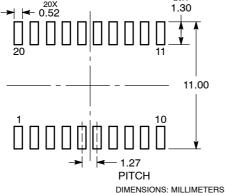
 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit


ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX245DWR2G	SOIC-20 (Pb-Free)	1000 Tape & Reel
MC74LCX245DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74LCX245DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX245DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NLV74LCX245DTR2G*	TSSOP-20 (Pb-Free)	2500 Tape & Reel
MC74LCX245MNTWG	QFN20 (Pb–Free)	3000 Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

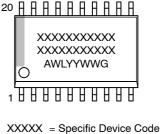
DOCUMENT NUMBER:	98AON12653D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TION: QFN20. 2.5X4.5 MM		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DUSem

CASE 751D-05 **ISSUE H**

SOIC-20 WB


DATE 22 APR 2015

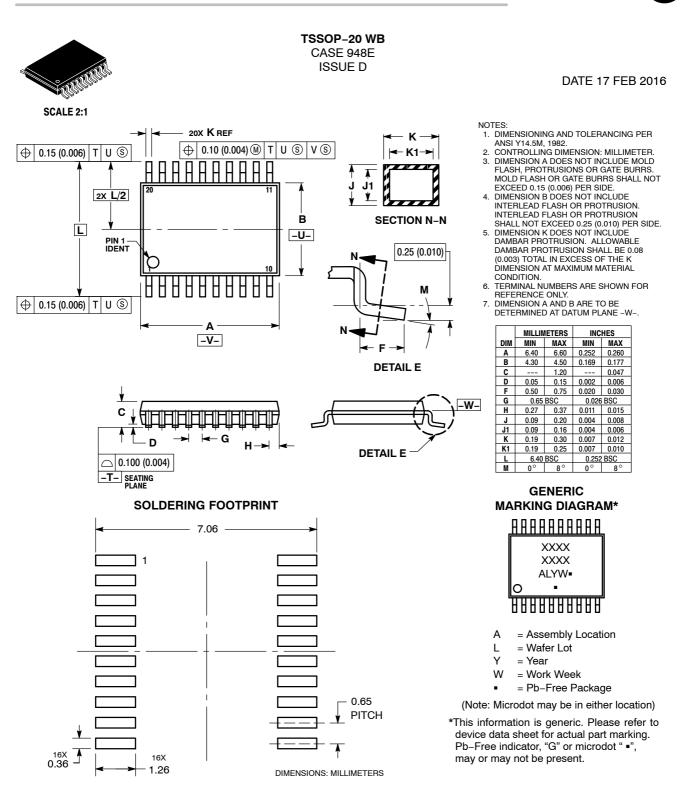
NOTES:

- DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES 1. 2.
- PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- DIMENSIONS DAND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIA 4 5. DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
b	0.35	0.49	
C	0.23	0.32	
D	12.65	12.95	
Е	7.40	7.60	
е	1.27 BSC		
Н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

GENERIC **MARKING DIAGRAM***

= Assembly Location


- = Wafer Lot WL
- YΥ = Year

А

- ww = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi ansme any liability arising out of the application or use of any product or circuit, and specifically disclarged warranty, including without to incidental damages. onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclarged warranty, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1			
ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

right to make changes without further notice to any products herein. ON Semicon s no warranty, repre the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclorating, or solication of use products for any particular purpose, not occes of series assume any maturing ansing on series of the application of use of any product or circuit, and specifically disclorations any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others, onsemi products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥