Low Offset Voltage Dual Comparators

LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903

The LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range-to-ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.

Features

- Wide Single-Supply Range: 2.0 Vdc to 36 Vdc
- Split-Supply Range: ± 1.0 Vdc to ± 18 Vdc
- Very Low Current Drain Independent of Supply Voltage: 0.4 mA
- Low Input Bias Current: 25 nA
- Low Input Offset Current: 5.0 nA
- Low Input Offset Voltage: 5.0 mV (max) LM293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels
- ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

PIN CONNECTIONS

DEVICE MARKING AND ORDERING

 INFORMATIONSee detailed marking information and ordering and shipping information on page 7 of this data sheet.

LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903

Figure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)

LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+36 or ± 18	V
Input Differential Voltage	$V_{\text {IDR }}$	36	V
Input Common Mode Voltage Range	$V_{\text {ICR }}$	-0.3 to +36	V
Output Voltage	V_{O}	36	V
Output Short Circuit-to-Ground Output Sink Current (Note 1)	$\begin{aligned} & I_{\mathrm{SC}} \\ & I_{\text {Sink }} \end{aligned}$	$\begin{aligned} & \text { Continuous } \\ & 20 \end{aligned}$	mA
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \mathrm{R}_{\text {өJA }} \end{gathered}$	$\begin{gathered} 570 \\ 5.7 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range LM293 LM393, LM393E LM2903, LM2903E LM2903V, NCV2903 (Note 2)	T_{A}	$\begin{gathered} -25 \text { to }+85 \\ 0 \text { to }+70 \\ -40 \text { to }+105 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature LM393, LM393E, LM2903, LM2903E, LM2903V LM293, NCV2903	$\mathrm{T}_{J(\max)}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The maximum output current may be as high as 20 mA , independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.
2. NCV2903 is qualified for automotive use.

ESD RATINGS

Rating	HBM	MM	Unit
ESD Protection at any Pin (Human Body Model - HBM, Machine Model - MM)			
NCV2903 (Note 2)	2000	200	V
LM393E, LM2903E	1500	150	V
LM393DG/DR2G, LM2903DG/DR2G	250	100	V
All Other Devices	1500	150	V

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}\right.$, unless otherwise noted. $)$

Characteristic	Symbol	LM293, LM393, LM393E			LM2903/E/V, NCV2903			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 4) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	V_{10}		± 1.0	$\begin{array}{r} \pm 5.0 \\ \pm 9.0 \\ \hline \end{array}$	-	$\begin{array}{r} \pm 2.0 \\ \pm 9.0 \\ \hline \end{array}$	$\begin{gathered} \pm 7.0 \\ \pm 15 \end{gathered}$	mV
Input Offset Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	${ }_{10}$		± 5.0	$\begin{gathered} \pm 50 \\ \pm 150 \end{gathered}$	-	$\begin{gathered} \pm 5.0 \\ \pm 50 \end{gathered}$	$\begin{gathered} \pm 50 \\ \pm 200 \end{gathered}$	nA
Input Bias Current (Note 5) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	IIB		20	$\begin{aligned} & 250 \\ & 400 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & \hline \end{aligned}$	nA
Input Common Mode Voltage Range (Note 6) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & V_{C C}-1.5 \\ & V_{\mathrm{CC}}-2.0 \\ & \hline \end{aligned}$	0		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-2.0 \\ & \hline \end{aligned}$	V
```Voltage Gain \(R_{L} \geq 15 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)```	Avol	50	200	-	25	200	-	V/mV
Large Signal Response Time $V_{\text {in }}=$ TTL Logic Swing, $V_{\text {ref }}=1.4 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	-	300	-	-	300	-	ns
Response Time (Note 7) $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }_{\text {t }}^{\text {the }}$	-	1.3	-	-	1.5	-	us
Input Differential Voltage (Note 8)   All $\mathrm{V}_{\text {in }} \geq$ GND or V - Supply (if used)	$\mathrm{V}_{\text {ID }}$	-	-	$\mathrm{V}_{\mathrm{CC}}$	-	-	$\mathrm{V}_{\mathrm{CC}}$	V
$\begin{aligned} & \text { Output Sink Current } \\ & \quad \mathrm{V}_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{in}+}=0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{Vdc} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\text {Sink }}$	6.0	16	-	6.0	16	-	mA
Output Saturation Voltage $\begin{aligned} & \mathrm{V}_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }+}=0, \mathrm{I}_{\text {Sink }} \leq 4.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	V OL	-	150	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	-	$200$	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	mV
Output Leakage Current $\begin{aligned} & \mathrm{V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }+} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }+} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{Vdc}, \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	${ }_{\text {IOL }}$	-	$0.1$	$1000$	-	$0.1$	$1000$	nA
Supply Current   $R_{L}=\infty$ Both Comparators, $T_{A}=25^{\circ} \mathrm{C}$   $\mathrm{R}_{\mathrm{L}}=\infty$ Both Comparators, $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$	ICC	-	0.4	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	-	0.4	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
LM293 $\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$
LM393, LM393E Tlow $=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$
LM2903, LM2903E $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C}$
LM2903V \& NCV2903 $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$
NCV2903 is qualified for automotive use.
3. The maximum output current may be as high as 20 mA , independent of the magnitude of $\mathrm{V}_{\mathrm{CC}}$, output short circuits to $\mathrm{V}_{\mathrm{CC}}$ can cause excessive heating and eventual destruction.
4. At output switch point, $\mathrm{V}_{\mathrm{O}} \simeq 1.4 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}_{\mathrm{Cc}}$ from 5.0 Vdc to 30 Vdc , and over the full input common mode range ( 0 V to $\mathrm{V}_{\mathrm{CC}}=-1.5 \mathrm{~V}$ ).
5. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.
6. Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is $V_{C C}-1.5 \mathrm{~V}$.
7. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.
8. The comparator will exhibit proper output state if one of the inputs becomes greater than $\mathrm{V}_{\mathrm{CC}}$, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.


Figure 2. Input Bias Current versus Power Supply Voltage


Figure 4. Output Saturation Voltage versus Output Sink Current


Figure 6. Power Supply Current versus Power Supply Voltage

LM2903


Figure 3. Input Bias Current versus Power Supply Voltage


Figure 5. Output Saturation Voltage versus Output Sink Current


Figure 7. Power Supply Current versus Power Supply Voltage

## APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions ( $\mathrm{V}_{\mathrm{OL}}$ to $\mathrm{V}_{\mathrm{OH}}$ ). To alleviate this situation, input resistors $<10 \mathrm{k} \Omega$ should be used.


D1 prevents input from going negative by more than 0.6 V .

$$
\mathrm{R} 1+\mathrm{R} 2=\mathrm{R} 3
$$

$\mathrm{R} 3 \leq \frac{\mathrm{R} 5}{10}$ for small error in zero crossing.
Figure 8. Zero Crossing Detector
(Single Supply)


Figure 10. Free-Running Square-Wave Oscillator

The addition of positive feedback ( $<10 \mathrm{mV}$ ) is also recommended. It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.


Figure 9. Zero Crossing Detector (Split Supply)


Figure 11. Time Delay Generator


Figure 12. Comparator with Hysteresis

MARKING DIAGRAMS


## LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903

ORDERING INFORMATION

Device	Operating Temperature   Range	Package	Shipping ${ }^{\dagger}$

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.


SCALE 1:1


$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
H	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0	$\circ$	$8{ }^{\circ}$	$0{ }^{\circ}$		
N	0.25	0.50	0.010	0.020		
$\mathbf{S}$	5.80	6.20	0.228	0.244		

## GENERIC

MARKING DIAGRAM*



XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. $N / C$

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

## STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE 2:
PIN 1. COLLECTOR,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5. P-DRAIN
6. P-DRAIN
7. N -DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

## STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

## STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

## STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

## STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

## STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

## STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

## STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

## STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

## STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

## STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

## NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MILD FLASH, PRDTRUSIUNS, $G R$ GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRZTRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE TI THE LIWEST PDINT IN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*


XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package



END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	---	--	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
$\mathrm{H}_{\mathrm{E}}$	4.75	4.90	
L	0.40	5.05	



[^1]
## STYLE 3:

STYLE 1:	STYLE 2.
PIN 1. SOURCE	PIN 1. SOURCE 1
2. SOURCE	2. GATE 1
3. SOURCE	3. SOURCE 2
4. GATE	4. GATE 2
5. DRAIN	5. DRAIN 2
6. DRAIN	6. DRAIN 2
7. DRAIN	7. DRAIN 1
8. DRAIN	8. DRAIN 1

PIN 1. N-SOURCE
2. N-GATE 3. P-SOURCE
4. P-GATE
5. P-GATE
5. P-DRAIN
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " $G$ " or microdot """, may or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com


[^0]:    ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]:    Solderrng and
    SLLDERRM/D.

