Low Voltage Single Supply Dual DPDT Analog Switch

The NLAST44599 is an advanced CMOS dual-independent DPDT (double pole-double throw) analog switch, fabricated with silicon gate CMOS technology. It achieves high-speed propagation delays and low ON resistances while maintaining CMOS low-power dissipation. This DPDT controls analog and digital voltages that may vary across the full power-supply range (from $V_{\rm CC}$ to GND).

The device has been designed so the ON resistance (R_{ON}) is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel-select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

The NLAST44599 can also be used as a quad 2-to-1 multiplexer-demultiplexer analog switch with two Select pins that each controls two multiplexer-demultiplexers.

- Select Pins Compatible with TTL Levels
- Channel Select Input Overvoltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: Human Body Model > 2000 V; Machine Model > 100 V
- Chip Complexity: 158 FETs
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

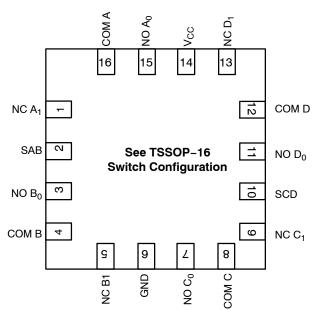
MARKING DIAGRAMS

QFN-16 MN SUFFIX CASE 485G

TSSOP-16 DT SUFFIX CASE 948F

A = Assembly Location

L = Wafer Lot
 Y = Year
 W = Work Week


= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

QFN-16 PACKAGE

FUNCTION TABLE

Select AB or CD	ON Channel
L	NC to COM
H	NO to COM

TSSOP-16 PACKAGE

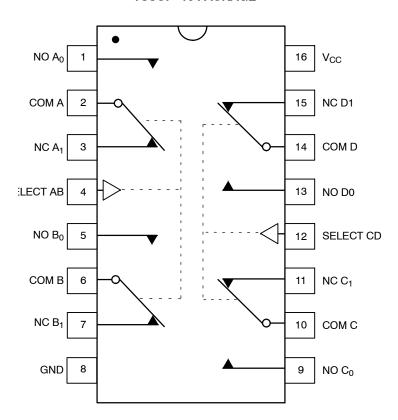


Figure 1. Logic Diagram

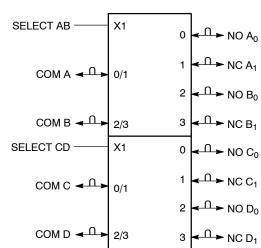


Figure 2. IEC Logic Symbol

MAXIMUM RATINGS

Symbol	Par	ameter	Value	Unit
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IS}	Analog Input Voltage (V _{NO} or V _{COM})		$-0.5 \le V_{IS} \le V_{CC} + 0.5$	V
V _{IN}	Digital Select Input Voltage		$-0.5 \le V_I \le +7.0$	V
I _{IK}	DC Current, Into or Out of Any Pin		±50	mA
P _D	Power Dissipation in Still Air	QFN-16 TSSOP-16	800 450	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10	260	°C	
TJ	Junction Temperature Under Bias		+150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL-94-VO (0.125 in)	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	2000 100 1000	V
I _{LATCH-UP}	Latch-Up Performance	Above V _{CC} and Below GND at 125°C (Note 4)	±300	mA
$\theta_{\sf JA}$	Thermal Resistance	QFN-16 TSSOP-16	80 164	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Tested to EÍA/JESD22-A114-A.
- 2. Tested to EIA/JESD22-A115-A.
- 3. Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage	2.0	5.5	V	
V _{IN}	Digital Select Input Voltage	GND	5.5	V	
V _{IS}	Analog Input Voltage (NC, NO, COM)		GND	V _{CC}	V
T _A	Operating Temperature Range		- 55	+125	°C
t _r , t _f	Input Rise or Fall Time, SELECT VCC	$z = 3.3 \text{ V} \pm 0.3 \text{ V}$ $z = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0	100 20	ns/V

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

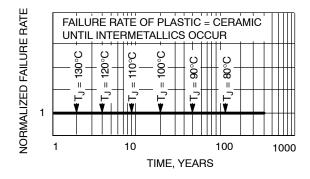


Figure 3. Failure Rate vs. Time Junction Temperature

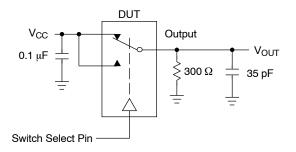
DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Condition	V _{CC}	-55°C to 25°C	<85°C	<125°C	Unit
V _{IH}	Minimum High-Level Input		3.0	2.0	2.0	2.0	V
	Voltage, Select Inputs		4.5	2.0	2.0	2.0	
			5.5	2.0	2.0	2.0	
V _{IL}	Maximum Low-Level Input		3.0	0.5	0.5	0.5	V
	Voltage, Select Inputs		4.5	0.8	0.8	0.8	
			5.5	0.8	0.8	0.8	
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	5.5	±0.2	±2.0	±2.0	μΑ
I _{OFF}	Power Off Leakage Current, Select Inputs	V _{IN} = 5.5 V or GND	0	±10	±10	±10	μΑ
Icc	Maximum Quiescent Supply Current	Select and V _{IS} = V _{CC} or GND	5.5	4.0	4.0	8.0	μΑ

DC ELECTRICAL CHARACTERISTICS - Analog Section

				Guaranteed Limit			
Symbol	Parameter	Condition	Vcc	-55°C to 25°C	<85°C	<125°C	Unit
R _{ON}	Maximum "ON" Resistance	$V_{IN} = V_{IL}$ or V_{IH}	2.5	85	95	105	Ω
	(Figures 17 – 23)	V _{IS} = GND to V _{CC}	3.0	45	50	55	
		$I_{IN}I \leq 10.0 \text{ mA}$	4.5	30	35	40	
			5.5	25	30	35	
R _{FLAT} (ON)	ON Resistance Flatness (Figures 17 – 23)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{IN}I \le 10.0 \text{ mA}$ $V_{IS} = 1 \text{ V, 2 V, 3.5 V}$	4.5	4	4	5	Ω
I _{NC(OFF)}	NO or NC Off Leakage Current (Figure 9)	V _{IN} = V _{IL} or V _{IH} V _{NO} or V _{NC} = 1.0 V _{COM} 4.5 V	5.5	1	10	100	nA
I _{COM(ON)}	COM ON Leakage Current (Figure 9)	$V_{IN} = V_{IL}$ or V_{IH} V_{NO} 1.0 V or 4.5 V with V_{NC} floating or V_{NO} 1.0 V or 4.5 V with V_{NO} floating $V_{COM} = 1.0$ V or 4.5 V	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)


						Guaranteed Maximum Limit						
			Vcc	VIS	- 5	5°C to 2	5°C	<8	5°C	< 12	25°C	İ
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Тур*	Max	Min	Max	Min	Max	Unit
t _{ON}	Turn-On Time	$R_L = 300 \Omega, C_L = 35 pF$	2.5	2.0	5	23	35	5	38	5	41	ns
	(Figures 12 and 13)	(Figures 5 and 6)	3.0	2.0	5	16	24	5	27	5	30	
			4.5	3.0	2	11	16	2	19	2	22	
			5.5	3.0	2	9	14	2	17	2	20	
t _{OFF}	Turn-Off Time	$R_L = 300 \Omega, C_L = 35 pF$	2.5	2.0	1	7	12	1	15	1	18	ns
	(Figures 12 and 13)	(Figures 5 and 6)	3.0	2.0	1	5	10	1	13	1	16	
			4.5	3.0	1	4	6	1	9	1	12	
			5.5	3.0	1	3	5	1	8	1	11	
t _{BBM}	Minimum Break-Before-Make	V _{IS} = 3.0 V (Figure 4)	2.5	2.0	1	12		1		1		ns
	Time	$R_L = 300 \Omega, C_L = 35 pF$	3.0	2.0	1	11		1		1		
			4.5	3.0	1	6		1		1		1
			5.5	3.0	1	5		1		1		

^{*}Typical Characteristics are at 25°C.

		Typical @ 25, VCC = 5.0 V	
C _{IN}	Maximum Input Capacitance, Select Input	8	pF
C _{NO} or C _{NC}	Analog I/O (Switch Off)	10	
C _{COM}	Common I/O (Switch Off)	10	
C _(ON)	Feedthrough (Switch On)	20	

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			V _{CC}	Typical	
Symbol	Parameter	Condition	٧	25°C	Unit
BW	Maximum On-Channel – 3 dB Bandwidth or	V _{IN} = 0 dBm	3.0	145	MHz
	Minimum Frequency Response	V _{IN} centered between V _{CC} and GND	4.5	170	
	(Figure 11)	(Figure 7)	5.5	175	
V_{ONL}	Maximum Feedthrough On Loss	V _{IN} = 0 dBm @ 100 kHz to 50 MHz	3.0	-3	dB
		V _{IN} centered between V _{CC} and GND	4.5	-3	
		(Figure 7)	5.5	-3	
V _{ISO}	Off-Channel Isolation	f = 100 kHz; V _{IS} = 1 V RMS	3.0	-93	dB
	(Figure 10)	V _{IN} centered between V _{CC} and GND	4.5	-93	
		(Figure 7)	5.5	-93	
Q	Charge Injection Select Input to Common I/O	V _{IN =} V _{CC} to GND, F _{IS} = 20 kHz	3.0	1.5	рС
	(Figure 15)	$t_r = t_f = 3 \text{ ns}$	5.5	3.0	
		$R_{IS} = 0 \Omega, C_L = 1000 pF$			
		$Q = C_L * \Delta V_{OUT} $ (Figure 8)			
THD	Total Harmonic Distortion THD + Noise	F_{IS} = 20 Hz to 100 kHz, R_L = Rgen = 600 Ω , C_L = 50 pF			%
	(Figure 14)	V _{IS} = 5.0 V _{PP} sine wave	5.5	0.1	
VCT	Channel to Channel Crosstalk	f = 100 kHz; V _{IS} = 1 V RMS			dB
		V _{IN} centered between V _{CC} and GND	5.5	-90	
		(Figure 7)	3.0	-90	

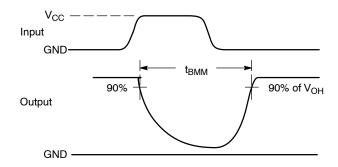
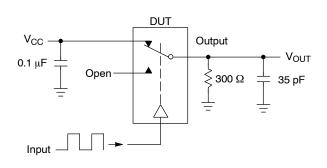



Figure 4. t_{BBM} (Time Break-Before-Make)

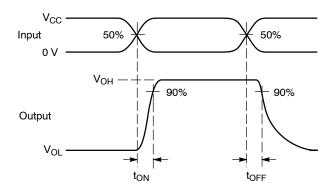
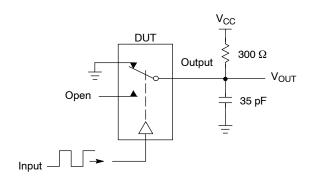



Figure 5. t_{ON}/t_{OFF}

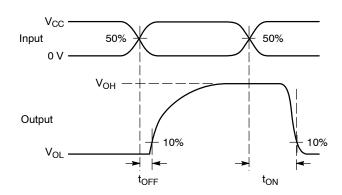
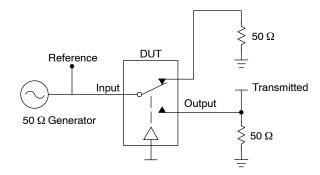



Figure 6. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} &V_{ISO} = \text{Off Channel Isolation} = 20 \text{ Log } \left(\frac{\text{VOUT}}{\text{VIN}}\right) \text{for V}_{IN} \text{ at } 100 \text{ kHz} \\ &V_{ONL} = \text{On Channel Loss} = 20 \text{ Log } \left(\frac{\text{VOUT}}{\text{VIN}}\right) \text{for V}_{IN} \text{ at } 100 \text{ kHz to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

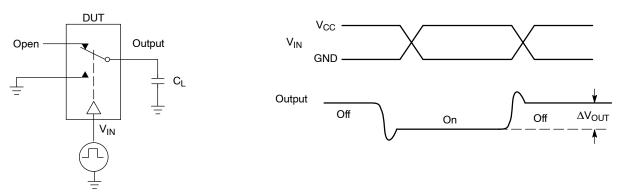


Figure 8. Charge Injection: (Q)

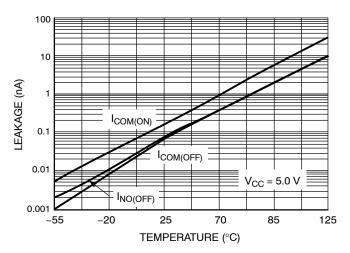
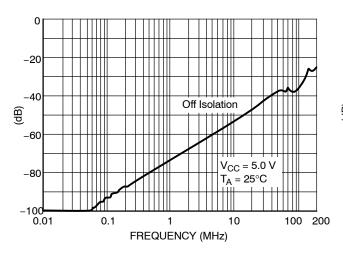



Figure 9. Switch Leakage vs. Temperature

30

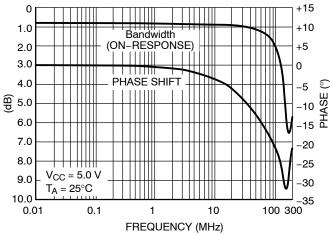
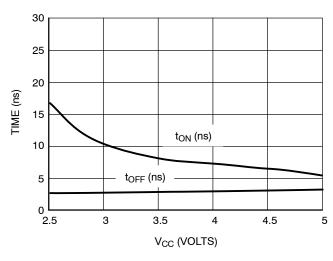



Figure 10. Off-Channel Isolation

Figure 11. Typical Bandwidth and Phase Shift

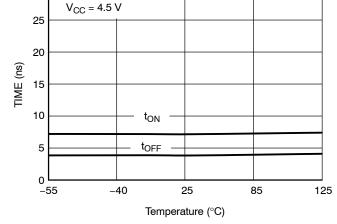
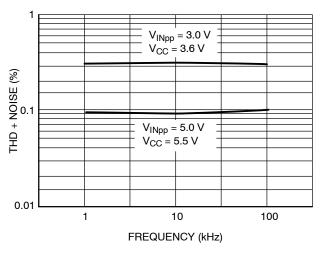



Figure 12. t_{ON} and t_{OFF} vs. V_{CC} at 25°C

Figure 13. t_{ON} and t_{OFF} vs. Temp

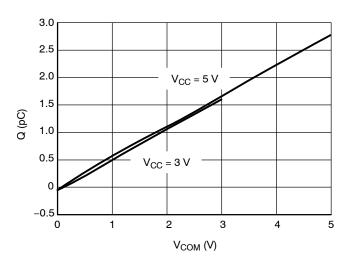
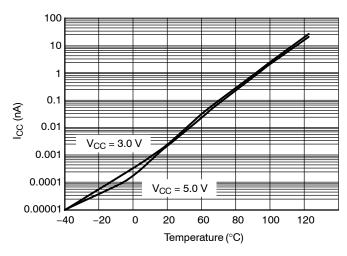
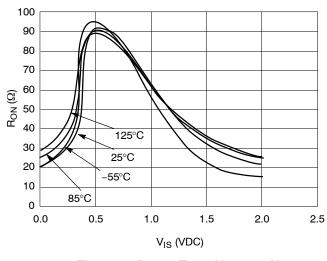



Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency


Figure 15. Charge Injection vs. COM Voltage

100 $V_{CC} = 2.0 \text{ V}$ 80 60 Ron (Q) $V_{CC} = 2.5 \text{ V}$ 40 $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.0 V$ 20 $V_{CC} = 5.5 \text{ V}$ 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 V_{IS} (VDC)

Figure 16. I_{CC} vs. Temp, V_{CC} = 3 V and 5 V

Figure 17. R_{ON} vs. V_{CC}, Temp = 25°C

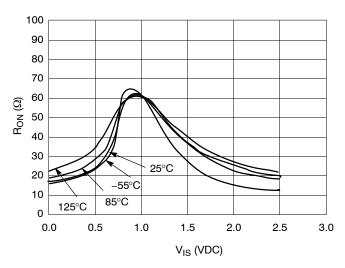
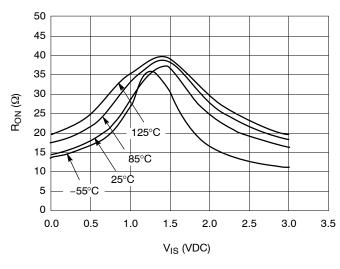



Figure 18. R_{ON} vs Temp, V_{CC} = 2.0 V

Figure 19. R_{ON} vs. Temp, V_{CC} = 2.5 V

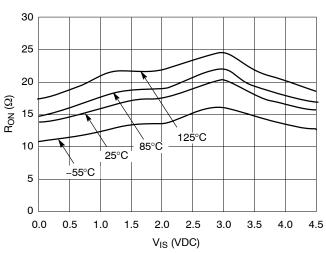
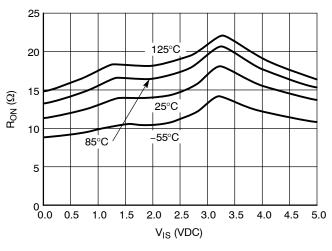



Figure 20. R_{ON} vs. Temp, V_{CC} = 3.0 V

Figure 21. R_{ON} vs. Temp, V_{CC} = 4.5 V

25 20 125°C 10 85°C -55°C 5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 V_{IS} (VDC)

Figure 22. R_{ON} vs. Temp, V_{CC} = 5.0 V

Figure 23. R_{ON} vs. Temp, $V_{CC} = 5.5 \text{ V}$

DEVICE ORDERING INFORMATION

		De	vice Nomer		· · · · · · · · · · · · · · · · · · ·		
Device Order Number	Circuit Indicator	Technology	Device Function	Package Suffix	Tape and Reel Suffix	Package Type	Shipping [†]
NLAST44599DT	NL	AS	44599	DT		TSSOP-16*	96 Unit / Rail
NLAST44599DTR2	NL	AS	44599	DT	R2	TSSOP-16*	2500 / Tape & Reel
NLAST44599MN	NL	AS	44599	MN		QFN-16	124 Unit Rail
NLAST44599MNG	NL	AS	44599	MN		QFN-16 (Pb-Free)	124 Unit Rail
NLAST44599MNR2	NL	AS	44599	MN	R2	QFN-16	2500 / Tape & Reel
NLAST44599MNR2G	NL	AS	44599	MN	R2	QFN-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}This package is inherently Pb-Free.

回

TOP VIEW

┅┅

SIDE VIEW

DETAIL B

LEA

A1

PIN ONE

LOCATION

2X 0.10 C

2X 0.10 C

// 0.05 C

□ 0.05 C

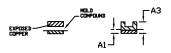
NOTE 4

QFN16 3x3, 0.5P CASE 485G ISSUE G SCALE 2:1

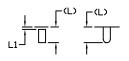
Α

В

SEATING PLANE

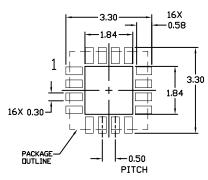

C

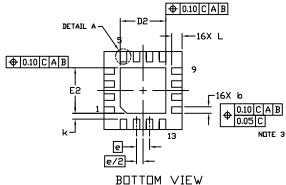
Ē


DATE 08 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS.
 THE TERMINALS.


DETAIL B
ALTERNATE
CONSTRUCTIONS



DETAIL A
ALTERNATE TERMINAL
CONSTRUCTIONS

	MILLIME					
DIM	MIN.	N□M.	MAX.			
Α	0.80	0.90	1.00			
A1	0.00	0.03	0.05			
A3		0.20 REF				
b	0.18	0.24	0.30			
D		3.00 B2C	;			
DS	1.65	1.75	1.85			
E		3.00 BSC	;			
E2	1.65	1.75	1.85			
e		0.50 BSC	;			
k	0.18 TYP					
L	0.30	0.40	0.50			
L1	0.00	0.08	0.15			
E E2 e k	0.30	3.00 BSC 1.75 0.50 BSC 0.18 TYF 0.40	1.85			

MOUNTING FOOTPRINT

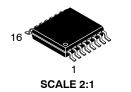
GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

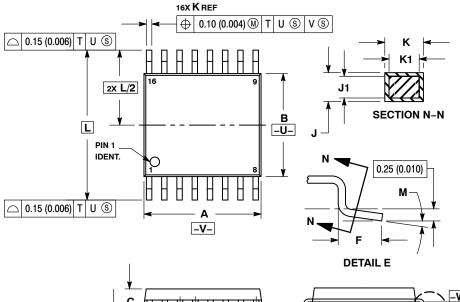
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	QFN16 3X3, 0.5P		PAGE 1 OF 1			

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

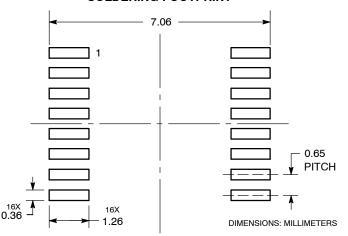
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative