NLAST44599

Low Voltage Single Supply Dual DPDT Analog Switch

The NLAST44599 is an advanced CMOS dual-independent DPDT (double pole-double throw) analog switch, fabricated with silicon gate CMOS technology. It achieves high-speed propagation delays and low ON resistances while maintaining CMOS low-power dissipation. This DPDT controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The device has been designed so the ON resistance (R_{ON}) is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel-select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

The NLAST44599 can also be used as a quad 2-to-1 multiplexerdemultiplexer analog switch with two Select pins that each controls two multiplexer-demultiplexers.

- Select Pins Compatible with TTL Levels
- Channel Select Input Overvoltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: Human Body Model > 2000 V;

Machine Model > 100 V

- Chip Complexity: 158 FETs
- Pb-Free Packages are Available

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAMS

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { L } & =\text { Wafer Lot } \\
\text { Y } & =\text { Year } \\
\text { W } & =\text { Work Week } \\
\text { - } & \text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

Select AB or CD	ON Channel
L	NC to COM
H	NO to COM

Figure 2. IEC Logic Symbol

Figure 1. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	Positive DC Supply Voltage	-0.5 to +7.0	V
$V_{\text {IS }}$	Analog Input Voltage ($\mathrm{V}_{\text {NO }}$ or $\mathrm{V}_{\text {COM }}$)	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$	V
$\mathrm{I}_{\text {IK }}$	DC Current, Into or Out of Any Pin	± 50	mA
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { QFN-16 } \\ \text { TSSOP-16 }\end{array}$	$\begin{aligned} & 800 \\ & 450 \end{aligned}$	mW
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL-94-VO (0.125 in)	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{gathered} 2000 \\ 100 \\ 1000 \end{gathered}$	V
ILATCH-UP	Latch-Up Performance \quad Above V_{CC} and Below GND at 125 ${ }^{\circ} \mathrm{C}$ (Note 4)	± 300	mA
$\theta_{\text {JA }}$	Thermal Resistance $\begin{array}{r}\text { QFN-16 } \\ \text { TSSOP-16 }\end{array}$	$\begin{gathered} \hline 80 \\ 164 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD22-A114-A.
2. Tested to EIA/JESD22-A115-A.
3. Tested to JESD22-C101-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	GND	5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (NC, NO, COM)	GND	V_{CC}	V
T_{A}	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	100
20	$\mathrm{~ns} / \mathrm{V}$			

DEVICE JUNCTION TEMPERATURE VERSUS

TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V cc	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
VIL	Maximum Low-Level Input Voltage, Select Inputs		$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
I_{N}	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	5.5	± 0.2	± 2.0	± 2.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	0	± 10	± 10	± 10	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5	4.0	4.0	8.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {ON }}$	Maximum "ON" Resistance (Figures 17 - 23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 105 \\ 55 \\ 40 \\ 35 \end{gathered}$	Ω
RFLAT (ON)	ON Resistance Flatness (Figures 17-23)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \\ & \hline \end{aligned}$	4.5	4	4	5	Ω
$\mathrm{I}_{\text {NC(OFF) }}$ INO(OFF)	NO or NC Off Leakage Current (Figure 9)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	5.5	1	10	100	nA
$\mathrm{I}_{\text {COM(ON }}$	COM ON Leakage Current (Figure 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NO} floating $\mathrm{V}_{\text {COM }}=1.0 \mathrm{~V}$ or 4.5 V	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	V_{IS} (V)	Guaranteed Maximum Limit							Unit
					$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	Min	Max	
t_{ON}	Turn-On Time (Figures 12 and 13)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 5 and 6)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 23 \\ 16 \\ 11 \\ 9 \end{gathered}$	$\begin{aligned} & 35 \\ & 24 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 38 \\ & 27 \\ & 19 \\ & 17 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 41 \\ & 30 \\ & 22 \\ & 20 \end{aligned}$	ns
toff	Turn-Off Time (Figures 12 and 13)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 5 and 6)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 12 \\ 10 \\ 6 \\ 5 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 15 \\ 13 \\ 9 \\ 8 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \\ & 12 \\ & 11 \end{aligned}$	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \mathrm{~V} \text { (Figure 4) } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	1 1 1 1	$\begin{gathered} \hline 12 \\ 11 \\ 6 \\ 5 \end{gathered}$		1 1 1 1		1 1 1 1		ns

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

		Typical @ 25, VCC = 5.0 V	
C_{IN}	Maximum Input Capacitance, Select Input	8	
$\mathrm{C}_{\mathrm{NO} \text { or } \mathrm{C}_{\mathrm{NC}}}$ Analog I/O (Switch Off)	10	pF	
$\mathrm{C}_{\mathrm{COM}}$	Common I/O (Switch Off)	10	
$\mathrm{C}_{(\mathrm{ON})}$	Feedthrough (Switch On)	20	

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\begin{gathered} \mathrm{v}_{\mathrm{Cc}} \\ \mathrm{v} \end{gathered}$	Typical	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel - 3 dB Bandwidth or Minimum Frequency Response (Figure 11)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 145 \\ & 170 \\ & 175 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ @ 100 kHz to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-3 \\ & -3 \\ & -3 \end{aligned}$	dB
VISO	Off-Channel Isolation (Figure 10)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \\ & \hline \end{aligned}$	dB
Q	Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}=} \mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \mathrm{~F}_{\mathrm{IS}}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns} \\ & \mathrm{R}_{\mathrm{IS}}=0 \Omega, C_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} * \Delta \mathrm{~V}_{\text {OUT }} \text { (Figure 8) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\mathrm{IS}}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{aligned}$	5.5	0.1	\%
VCT	Channel to Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz}$; $\mathrm{V}_{\text {IS }}=1 \mathrm{~V}$ RMS $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & -90 \\ & -90 \end{aligned}$	dB

NLAST44599

Figure 4. t_{BB} (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ ${ }_{\text {ONL }}$

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage vs. Temperature

NLAST44599

Figure 10. Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. V_{CC} at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 11. Typical Bandwidth and Phase Shift

Figure 13. t_{ON} and $\mathrm{t}_{\text {OFF }}$ vs. Temp

Figure 15. Charge Injection vs. COM Voltage

Figure 16. $\mathrm{I}_{\mathrm{Cc}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}$ and 5 V

Figure 18. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$ Temp, $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$

Figure 20. RoN $_{\text {vs. }}$ Temp, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 17. R_{ON} vs. $\mathrm{V}_{\mathrm{CC}}, \mathrm{Temp}=25^{\circ} \mathrm{C}$

Figure 19. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 21. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 22. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 23. R $_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature						
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape and Reel Suffix	Package Type	Shipping †
NLAST44599DT	NL	AS	44599	DT		TSSOP-16^	96 Unit / Rail
NLAST44599DTR2	NL	AS	44599	DT	R2	TSSOP-16^	$2500 /$ Tape \& Reel
NLAST44599MN	NL	AS	44599	MN		QFN-16	124 Unit Rail
NLAST44599MNG	NL	AS	44599	MN		QFN-16 (Pb-Free)	124 Unit Rail
NLAST44599MNR2	NL	AS	44599	MN	R2	QFN-16	$2500 /$ Tape \& Reel
NLAST44599MNR2G	NL	AS	44599	MN	R2	QFN-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently $\mathrm{Pb}-$ Free.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
DATE 08 OCT 2021

side view

battam View

Nates:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FREM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TD THE EXPOSED PAD AS WELL AS. THE TERMINALS.

DETAIL B
${ }^{\text {ALTERNATE }}$

DETAIL A
aLTERNATE TERMINAL
constructions

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			
D	3.00 BSC				
D2	1.65	1.75			1.85
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW:
\bullet

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

