

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

January 1990 Revised September 2000

74ACQ646 • 74ACTQ646 Quiet Series™ Octal Transceiver/Register with 3-STATE Outputs

General Description

The ACQ/ACTQ646 consist of registered bus transceiver circuits, with outputs, D-type flip-flops, and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CPAB or CPBA). The four fundamental handling functions available are illustrated in Figure 1, Figure 2, Figure 3 and Figure 4.

The ACQ/ACTQ utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Independent registers for A and B busses
- Multiplexed real-time and stored data transfers
- 300 mil slim dual-in-line package
- Outputs source/sink 24 mA
- Faster prop delays than the standard AC/ACT646

Ordering Code:

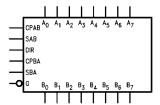
Order Number	Package Number	Package Description
74ACQ646SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74ACQ646ASPC	N24	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74ACTQ646SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74ACTQ646ASPC	N24	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

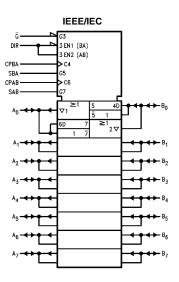
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagram

Pin Descriptions

Pin Names	Descriptions
A ₀ -A ₇	Data Register A Inputs
	Data Register A Outputs
B ₀ -B ₇	Data Register B Inputs
	Data Register B Outputs
CPAB, CPBA	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs
G	Output Enable Input
DIR	Direction Control Input

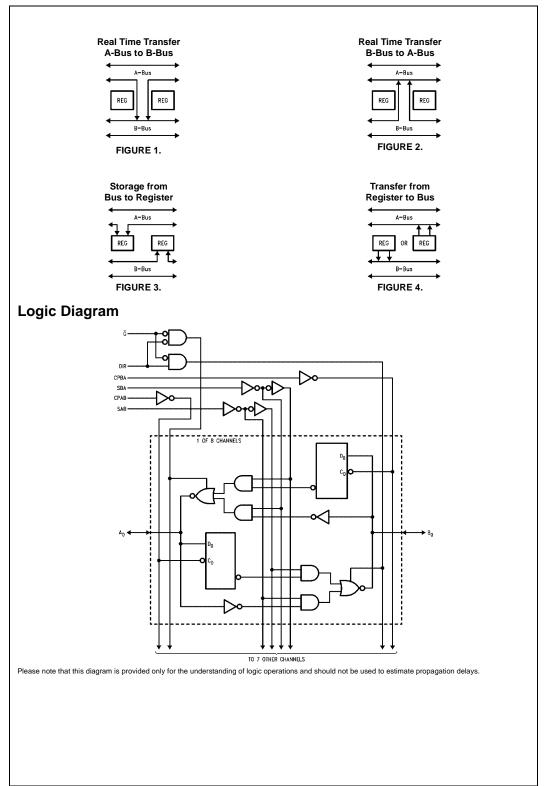

FACT™, Quiet Series™, FACT Quiet Series™ and GTO™ are trademarks of Fairchild Semiconductor Corporation


© 2000 Fairchild Semiconductor Corporation

DS010635

74ACQ646 • 74ACTQ646

Logic Symbols



Function Table

		Inp	uts			Data I/O	ata I/O (Note 1)		
G	DIR	CPAB	СРВА	SAB	SBA	A ₀ -A ₇	B ₀ -B ₇	Function	
Н	Х	H or L	H or L	Χ	Х			Isolation	
Н	X	~	X	Χ	X	Input	Input	Clock A _n Data into A Register	
Н	Χ	Χ	~	Χ	Χ			Clock B _n Data into B Register	
L	Н	Х	Х	L	Х			A _n to B _n —Real Time (Transparent Mode)	
L	Н	~	X	L	X	Input	Output	Clock A _n Data into A Register	
L	Н	H or L	X	Н	Χ			A Register to B _n (Stored Mode)	
L	Н	~	X	Н	Χ			Clock A _n Data into A Register and Output to B _n	
L	L	Х	Х	Χ	L			B _n to A _n —Real Time (Transparent Mode)	
L	L	X	~	Χ	L	Output	Input	Clock B _n Data into B Register	
L	L	X	H or L	Χ	Н			B Register to A _n (Stored Mode)	
L	L	Χ	~	Х	Н			Clock B _n Data into B Register and Output to A _n	

Note 1: The data output functions may be enabled or disabled by various signals at the \overline{G} and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
= LOW-to-HIGH Transition

Absolute Maximum Ratings(Note 2)

-0.5V to +7.0V Supply Voltage (V_{CC})

DC Input Diode Current (I_{IK})

 $V_I = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA DC Input Voltage (V_I) -0.5V to $V_{CC} + 0.5V$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_O = V_{CC} + 0.5V$ +20 mA -0.5V to $V_{CC} + 0.5V$

DC Output Voltage (V_O)

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ±50 mA Storage Temperature (T_{STG}) -65°C to +150°C

DC Latch-Up Source

or Sink Current ±300 mA

Junction Temperature (T_J)

PDIP

Recommended Operating Conditions

Supply Voltage (V_{CC})

ACQ 2.0V to 6.0V **ACTQ** 4.5V to 5.5V 0V to $V_{\mbox{\footnotesize CC}}$ Input Voltage (V_I)

Output Voltage (V_O) 0V to V_{CC} -40°C to +85°C Operating Temperature (T_A)

Minimum Input Edge Rate ΔV/Δt

ACQ Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

V_{CC} @ 3.0V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate $\Delta V/\Delta t$

ACTQ Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with-

out exception, to ensure that the system design is reliable over its power $140^{\circ}C$ supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for ACQ

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Symbol	r ai ailietei	(V)	Тур	Gu	aranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V
		5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.85	4.76		$I_{OH} = -24 \text{ mA (Note 3)}$
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 3)
I _{IN} (Note 5)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μΑ	$V_I = V_{CC}$, GND
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		8.0	80.0	μА	$V_{IN} = V_{CC}$ or GND
(Note 5)	Supply Current	3.3		0.0	80.0	μΛ	VIN - VCC OI GIVD
l _{OZT}	Maximum I/O						$V_I(OE) = V_{IL}, V_{IH}$
	Leakage Current	5.5		±0.6	±6.0	μΑ	$V_I = V_{CC}$, GND
	(A _n , B _n Inputs)						$V_O = V_{CC}$, GND
V _{OLP}	Quiet Output	5.0	1.1	1.5		V	Figures 5, 6
	Maximum Dynamic V _{OL}	5.0	1.1	1.0		v	(Note 6)(Note 7)

DC Electrical Characteristics for ACQ (Continued)

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Cymbol	i didiletei	(V)	Тур	Guaranteed Limits		Onits		
V _{OLV}	Quiet Output	5.0	-0.6	-1.2		V	Figures 5, 6	
	Minimum Dynamic V _{OL}	3.0	-0.0	-1.2		•	(Note 6)(Note 7)	
V_{IHD}	Minimum HIGH Level	5.0	3.1	3.5		V	(Note 6)(Note 8)	
	Dynamic Input Voltage	3.0	3.1	3.3		v	(Note o)(Note o)	
V _{ILD}	Maximum LOW Level	5.0	1.9	1.5		V	(Note 6)(Note 8)	
	Dynamic Input Voltage	3.0	1.5	1.5		v	(Note o)(Note o)	

Note 3: Maximum of 8 outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

Note 6: Plastic DIP package.

 $\textbf{Note 7:} \ \text{Max number of outputs defined as (n). Data inputs are driven 0V to 5V. One output @ GND.}$

Note 8: Max number of Data Inputs (n) switching. (n-1) inputs switching 0V to 5V (ACQ). Input-under-test switching 5V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) f = 1 MHz.

DC Electrical Characteristics for ACTQ

Faranietei		T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Parameter	(V)	Тур	Gu	Guaranteed Limits		Conditions	
Minimum HIGH Level	4.5	1.5	2.0	2.0		V _{OUT} = 0.1V	
Input Voltage	5.5	1.5	2.0	2.0	V	or V _{CC} – 0.1V	
Maximum LOW Level	4.5	1.5	0.8	0.8		$V_{OUT} = 0.1V$	
Input Voltage	5.5	1.5	0.8	0.8	V	or V _{CC} – 0.1V	
Minimum HIGH Level	4.5	4.49	4.4	4.4		Ι _{ΟΙΙΤ} = -50 μΑ	
Output Voltage	5.5	5.49	5.4	5.4	V	100Τ = -30 μΑ	
						$V_{IN} = V_{IL}$ or V_{IH}	
	4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
	5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 9)}$	
Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
Output Voltage	5.5	0.001	0.1	0.1	V	1007 = 30 μΑ	
						$V_{IN} = V_{IL}$ or V_{IH}	
	4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
	5.5		0.36	0.44		I _{OL} = 24 mA (Note 9)	
Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
Maximum I/O Leakage Current	5.5		+0.6	+6.0	пΔ	$V_I = V_{IL}, V_{IH}$	
(A _n , B _n Inputs)	0.0		±0.0	±0.0	μιτ	$V_O = V_{CC}$, GND	
Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$	
Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
Output Current (Note 10)	5.5			-75	mA	V _{OHD} = 3.85V Min	
Maximum Quiescent	5.5		8.0	80.0	пΔ	$V_{IN} = V_{CC}$	
Supply Current	0.0		0.0	00.0	μιτ	or GND	
Quiet Output	5.0	1 1	1.5		V	Figures 5, 6	
Maximum Dynamic V _{OL}	3.0	1.1	1.5		٧	(Note 11)(Note 12)	
Quiet Output	5.0	-0.6	_1.2		V	Figures 5, 6	
Minimum Dynamic V _{OL}	3.0	-0.0	-1.2		V	(Note 11)(Note 12)	
Minimum HIGH Level	5.0	1.7	2.0		V	(Note 11)(Note 13)	
Dynamic Input Voltage	5.0	1.7	2.0		•	(140.0 11)(140.0 10)	
Maximum LOW Level	5.0	12	0.8		V	(Note 11)(Note 13)	
Dynamic Input Voltage	5.0	1.2	0.0		V	(14016-11)(14016-13)	
	nput Voltage Maximum LOW Level nput Voltage Minimum HIGH Level Dutput Voltage Maximum LOW Level Dutput Voltage Maximum Input Leakage Current Maximum I/O Leakage Current Dutput Current (Note 10) Maximum Dynamic Dutput Current Quiet Output Maximum Dynamic V _{OL} Quiet Output Minimum Dynamic V _{OL} Minimum HIGH Level Dynamic Input Voltage Maximum LOW Level	Nput Voltage 5.5	New Yorkstand New York	Note	Note Note	Note	

Note 9: All outputs loaded; thresholds on input associated with output under test.

Note 10: Maximum test duration 2.0 ms, one output loaded at a time.

Note 11: Plastic DIP Package.

Note 12: Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND.

Note 13: Max number of data inputs (n) switching. (n-1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f=1 MHz.

74ACQ646 • 74ACTQ646

AC Electrical Characteristics for ACQ

		V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		$C_L = 50 \text{ pF}$		C _L =	50 pF	Units
		(Note 14)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	3.5	9.0	12.0	3.5	13.0	
	Bus to Bus	5.0	2.5	6.5	9.0	2.5	9.5	ns
t _{PHL}	Propagation Delay	3.3	3.5	9.0	12.0	3.5	13.0	
	Bus to Bus	5.0	2.5	6.5	9.0	2.5	9.5	ns
t _{PLH}	Propagation Delay	3.3	3.5	10.0	13.0	3.5	14.0	
	Clock to Bus	5.0	2.5	7.0	9.5	2.5	10.5	ns
t _{PHL}	Propagation Delay	3.3	3.5	10.0	13.0	3.5	14.0	
	Clock to Bus	5.0	2.5	7.0	9.5	2.5	10.5	ns
t _{PLH}	Propagation Delay	3.3	3.5	9.5	12.5	3.5	13.5	
	SBA or SAB to A _n or B _n	5.0	2.5	6.5	9.0	2.5	10.0	ns
	(w/A _n or B _n HIGH or LOW)							
t _{PHL}	Propagation Delay	3.3	3.5	9.5	12.5	3.5	13.5	
	SBA or SAB to A _n or B _n	5.0	2.5	6.5	9.0	2.5	10.0	ns
	(w/A _n or B _n HIGH or LOW)							
t _{PZH}	Enable Time	3.3	3.5	10.5	14.5	3.5	15.5	ns
	G to A _n or B _n	5.0	2.5	8.0	10.5	2.5	11.5	115
t _{PZL}	Enable Time	3.3	3.5	10.5	14.5	3.5	15.5	ns
	G to A _n or B _n	5.0	2.5	8.0	10.5	2.5	11.5	115
t _{PHZ}	Disable Time	3.3	2.5	8.0	11.0	2.5	12.0	20
	G to A _n or B _n	5.0	1.5	5.0	7.5	1.5	8.0	ns
t _{PLZ}	Disable Time	3.3	2.5	8.0	11.0	2.5	12.0	ns
	G to A _n or B _n	5.0	1.5	5.0	7.5	1.5	8.0	115
t _{PZH}	Enable Time	3.3	4.5	11.0	15.5	4.5	17.0	ns
	DIR to A _n or B _n	5.0	3.0	8.5	11.0	3.0	11.5	115
t _{PZL}	Enable Time	3.3	4.5	11.0	15.5	4.5	17.0	ns
	DIR to A _n or B _n	5.0	3.0	8.5	11.0	3.0	11.5	115
t _{PHZ}	Disable Time	3.3	1.5	8.0	11.0	1.5	12.0	20
	DIR to A _n or B _n	5.0	1.0	5.0	7.5	1.0	8.0	ns
t _{PLZ}	Disable Time	3.3	1.5	8.0	11.0	1.5	12.0	ns
	DIR to A _n or B _n	5.0	1.0	5.0	7.5	1.0	8.0	115
tos	Output to Output Skew (Note 15)	3.3		1.0	1.5		1.5	ne
		5.0		0.5	1.0		1.0	ns

Note 14: Voltage Range 3.3 is $3.3V \pm 0.3V$. Voltage Range 5.0 is $5.0V \pm 0.5V$

Note 15: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design. Not tested.

AC Operating Requirements for ACQ

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units
Oyillboi		(Note 16)	Тур	Gua	ranteed Minimum	Office
t _S	Setup Time, HIGH or LOW	3.3		3.0	3.0	20
	Bus to Clock	5.0		3.0	3.0	ns
t _H	Hold Time, HIGH or LOW	3.3		1.5	1.5	ns
	Bus to Clock	5.0		1.5	1.5	115
t _W	Clock Pulse Width	3.3		4.0	4.0	ns
	HIGH or LOW	5.0		4.0	4.0	115

Note 16: Voltage Range 5.0 is $5.0V \pm 0.5V$

Voltage Range 3.3 is 3.3V $\pm~0.3\text{V}$

AC Electrical Characteristics for ACTQ T_A = -40°C to +85°C $T_A = +25^{\circ}C$ v_{cc} $\textbf{C}_{\textbf{L}} = \textbf{50 pF}$ Units Symbol $\textbf{C}_{\boldsymbol{L}} = \textbf{50 pF}$ Parameter (V) (Note 17) Min Max Min Max Тур Propagation Delay t_{PLH} 5.0 2.5 8.5 10.5 2.5 11.0 ns t_{PHL} Propagation Delay t_{PLH} 5.0 8.0 10.0 2.0 10.5 Bus to Bus t_{PHL} Propagation Delay t_{PLH} SBA or SAB to A_n or B_n 5.0 2.5 8.5 10.5 2.5 11.0 ns (w/A_n or B_n HIGH or LOW) t_{PZH} Enable Time 5.0 2.5 10.0 12.0 2.5 12.5 $\overline{\mathsf{G}}$ to A_n or B_n t_{PZL} Disable Time t_{PHZ} 7.0 1.0 5.0 1.0 8.5 9.0 ns \overline{G} to A_n or B_n t_{PLZ} Enable Time t_{PZH} 5.0 2.5 10.0 12.0 2.5 12.5 DIR to A_n or B_n t_{PZL} t_{PHZ} Disable Time 1.0 7.0 1.0 9.0 5.0 8.5 ns DIR to A_n or B_n Output to Output toshl Skew (Note 18) Select to Bus 5.0 0.5 1.0 toslh or Clock to Bus toshl Output to Output Skew (Note 18) 5.0 1.0 1.5 1.5 ns Bus to Bus

Note 17: Voltage Range 5.0 is $5.0V \pm 0.5V$

Note 18: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toSHL) or LOW-to-HIGH (toSLH). Parameter guaranteed by design. Not tested.

AC Operating Requirements for ACTQ

Symbol	Symbol Parameter		,,	+25°C 50 pF	$T_A = -40$ °C to +85°C $C_L = 50$ pF	Units
		(Note 19)	Тур	Guara	anteed Minimum	
t _S	Setup Time, HIGH or LOW Bus to Clock	5.0		3.0	3.0	ns
t _H	Hold Time, HIGH or LOW Bus to Clock	5.0		1.5	1.5	ns
t _W	Clock Pulse Width HIGH or LOW	5.0		4.0	4.0	ns

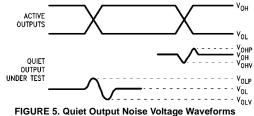
Note 19: Voltage Range 5.0 is 5.0V ± 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{I/O}	Input/Output Capacitance	15.0	pF	V _{CC} = 5.0V
C _{PD}	Power Dissipation Capacitance	90.0	pF	V _{CC} = 5.0V

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.


Equipment:

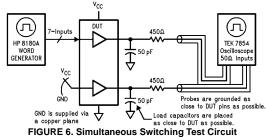
Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture

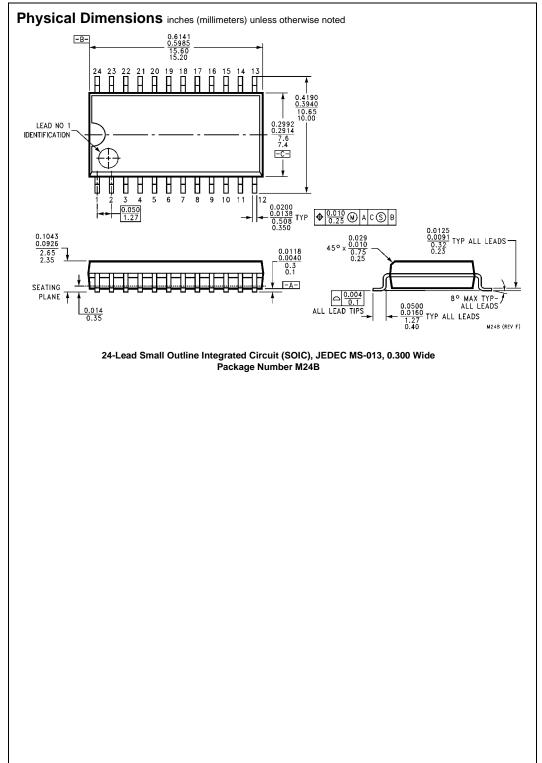
Tektronics Model 7854 Oscilloscope

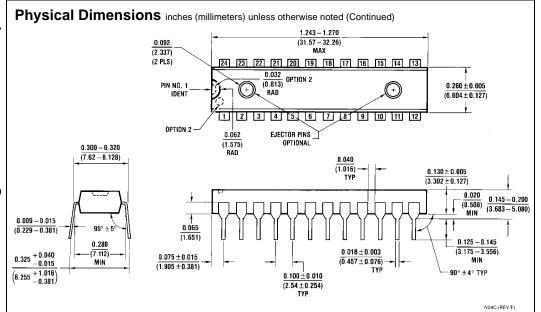
Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω .
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Note 20: V_{OHV} and V_{OLP} are measured with respect to ground reference


Note 21: v_{OHV} and v_{OLP} are measured with respect to ground reference. **Note 21:** Input pulses have the following characteristics: f = 1 MHz, $t_r = 3$ ns, $t_f = 3$ ns, skew < 150 ps.


V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV}:


- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL},until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} {\sf AccuPower^{\sf TM}} & & {\sf FRFET}^{\sf @} \\ {\sf Auto\text{-SPM}}^{\sf TM} & & {\sf Global\ Power\ Resource}^{\sf SM} \\ \end{array}$

 $\begin{array}{lll} \text{Build it Now}^{\text{\tiny{TM}}} & \text{Green FPS}^{\text{\tiny{TM}}} \\ \text{CorePLUS}^{\text{\tiny{TM}}} & \text{Green FPS}^{\text{\tiny{TM}}} \text{ e-Series}^{\text{\tiny{TM}}} \\ \text{CorePOWER}^{\text{\tiny{TM}}} & \text{G} \\ \end{array}$

GTO™

IntelliMAX™

ISOPLANAR™

MICROCOUPLER™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

OptoHiT™

Motion-SPM™

OPTOLOGIC®

OPTOPLANAR®

CorePOWER™

CROSSVOLT™

CTL™

Current Transfer Logic™

DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
■®

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]

FastvCore™ FETBench™ FloshWriter®*

FlashWriter®*
FPS™
F-PFS™

PDP SPM™ Power-SPM™ PowerTrench[®] PowerXS[™]

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

SPM®
STEALTH™
SUPERSOT™-3
SUPERSOT™-8
SUPERSOT™-8
SUPERSOT™-8
SUPERMOS™
SYNCFET™
SYNC-LOCK™
SYSTEM®*

The Power Franchise®

p wer franchise TinyBoost™

TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™*
µSerDes™

SerDes
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		D.:. 147

Rev. 147

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com