

September 2001 Revised February 2002

74ALVCH245 Low Voltage Bidirectional Transceiver with Bushold

General Description

The ALVCH245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The $\text{T/}\overline{\text{R}}$ input determines the direction of data flow. The $\overline{\text{OE}}$ input disables both the A and B Ports by placing them in a high impedance state. The ALVCH245 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

The 74ALVCH245 is designed for low voltage (1.65V to 3.6V) $\rm V_{CC}$ applications.

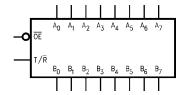
The 74ALVCH245 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- \blacksquare 1.65V to 3.6V $\rm V_{CC}$ supply operation
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- t_{PD}

3.6 ns max for 3.0V to 3.6V V $_{\rm CC}$ 4.2 ns max for 2.3V to 2.7V V $_{\rm CC}$ 6 ns max for 1.65V to 1.95V V $_{\rm CC}$

- Uses patented Quiet Series noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance:


Human body model > 2000V Machine model > 200V

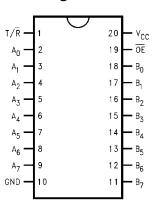
Ordering Code:

Order Number	Package Number	Package Description
74ALVCH245WM M20B		20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ALVCH245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

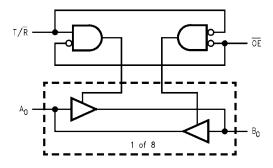
Pin Descriptions


Pin Names	Description		
ŌĒ	Output Enable Input (Active LOW)		
T/\overline{R}	Transmit/Receive Input		
$A_0 - A_7$	Side A Bushold Inputs or 3-STATE Outputs		
B ₀ -B ₇	Side B Bushold Inputs or 3-STATE Outputs		

Quiet Series™ is a trademark of Fairchild Semiconductor Corporation.

© 2002 Fairchild Semiconductor Corporation

DS500648


Connection Diagram

Truth Table

Inputs		Outputs				
OE T/R						
L	L	Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇				
L H H X		Bus B_0 – B_7 Data to Bus A_0 – A_7 Bus A_0 – A_7 Data to Bus B_0 – B_7				
		HIGH Z State on A ₀ –A ₇ , B ₀ –B ₇				
H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance						

Logic Diagram

Absolute Maximum Ratings(Note 1)

 $\begin{tabular}{lll} Supply Voltage (V_{CC}) & -0.5V to +4.6V \\ DC Input Voltage (V_I) & -0.5V to 4.6V \\ \end{tabular}$

Output Voltage (V $_{\rm O}$) (Note 2) $-0.5 \mbox{V}$ to V $_{\rm CC}$ +0.5V

DC Input Diode Current (I_{IK})

 $V_1 < 0V$ -50 mA

DC Output Diode Current (I_{OK})

 $V_O < 0V$ –50 mA

DC Output Source/Sink Current
(I_{OH}/I_{OL})

DC V_{CC} or GND Current per

Supply Pin (I_{CC} or GND) ± 100 mA

Storage Temperature Range (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 3)

Power Supply

±50 mA

Operating 1.65V to 3.6V Input Voltage (V_1) 0V to V_{CC}

Output Voltage (V_O)

Ov to V_{CC}

Free Air Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V \text{ to } 2.0V, V_{CC} = 3.0V$ 10 ns/\

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed, limited to 4.6V.

Note 3: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		•
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		,
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		•
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	V
		I _{OL} = 12 mA	2.3		0.7	·
			2.7		0.4	
		I _{OL} = 24 mA	3.0			•
l _l	Input Leakage Current	$0 \le V_1 \le 3.6V$	3.6		±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum	$V_{IN} = 0.58V$	1.65	25		
	Drive Hold Current	$V_{IN} = 1.07V$	1.65	-25		
		$V_{IN} = 0.7V$	2.3	45		•
		$V_{IN} = 1.7V$	2.3	-45		μΑ
		$V_{IN} = 0.8V$	3.0	75		•
		$V_{IN} = 2.0V$	3.0	-75		
		$0 < V_O \le 3.6V$	3.6		±500	
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
I _{cc}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		10	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μΑ

AC Electrical Characteristics

	Parameter	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, R_L = 500\Omega$								
Symbol		C _L = 50 pF			C _L = 30 pF			Units		
Cymbol		$V_{CC} = 3.3V \pm 0.3V$		V _{CC} = 2.7V		$V_{CC} = 2.5V \pm 0.2V$		$V_{CC} = 1.8V \pm 0.15V$		Onito
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay	1.3	3.6		4.2	1.0	3.7	1.5	6.0	ns
t_{PZL}, t_{PZH}	Output Enable Time	1.6	5.5		6.3	2.0	6.0	2.9	8.6	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.7	5.5		5.3	0.8	4.8	1.5	8.0	ns

Capacitance

Cumbal	Parameter		Conditions	T _A =	T _A = +25°C	
Symbol				V _{cc}	Typical	Units
C _{IN}	Input Capacitance	Control	V _I = 0V or V _{CC}	3.3	4.5	pF
C _{I/O}	Input/Output Capacitance	A or B Ports	V _I = 0V or V _{CC}	3.3	12	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 0 pF	3.3	31	
				2.5	28	
				1.8	25	
		Outputs Disabled	f = 10 MHz, C _L = 50 pF	3.3	0	pF
				2.5	0	
				1.8	0	

AC Loading and Waveforms

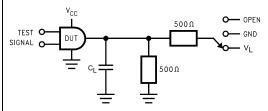


TABLE 1. Values for Figure 1

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t_{PZL} , t_{PLZ}	V_L
t _{PZH} , t _{PHZ}	GND

FIGURE 1. AC Test Circuit

TABLE 2. Variable Matrix (Input Characteristics: f= 1MHz; $t_r=t_f=$ 2ns; ${\bf Z}_0=50\Omega)$

Symbol	V _{CC}						
Symbol	$3.3V \pm 0.3V$	2.7V	$\textbf{2.5V} \pm \textbf{0.2V}$	1.8V ± 0.15V			
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2			
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2			
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V			
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V			
V _L	6V	6V	V _{CC} *2	V _{CC} *2			

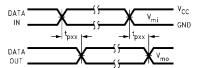


FIGURE 2. Waveform for Inverting and Non-inverting Functions

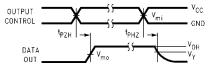


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

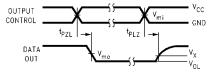
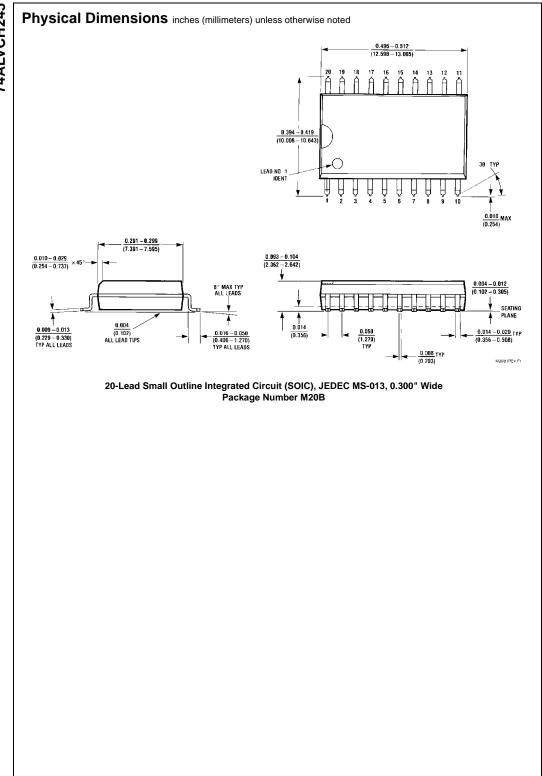
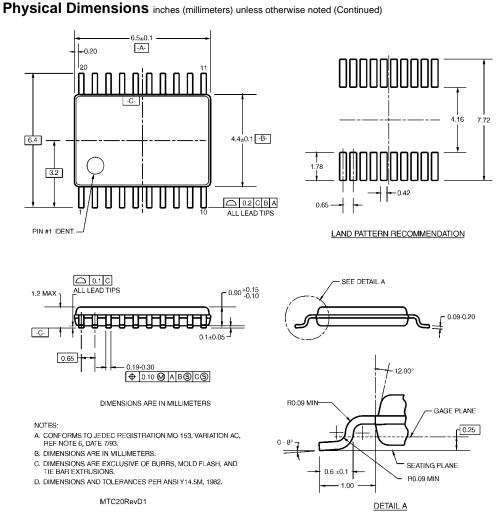




FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.