

June 1999 Revised April 2005

74VCX2245

Low Voltage Bidirectional Transceiver with 3.6V Tolerant Inputs and Outputs and 26 Ω Series Resistors in B Outputs

General Description

The VCX2245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The T/\overline{R} input determines the direction of data flow. The \overline{OE} input disables both the A and B ports by placing them in a high impedance state.

The 74VCX2245 is designed for low voltage (1.4V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V. The VCX2245 is also designed with 26Ω series resistance in the B Port outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers transmitters

The 74VCX2245 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

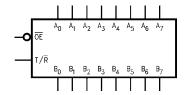
- 1.4V 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- \blacksquare 26 Ω series resistors in B Port outputs
- Power-off high impedance inputs and outputs
- Supports Live Insertion and Withdrawal (Note 1)
- t_{PD} (A to B)
 - 4.4 ns max for 3.0V to 3.6V V_{CC}
- \blacksquare Static Drive (I_OH/I_OL B outputs):
 - ±12 mA @ 3.0V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Latchup performance exceeds JEDEC 78 conditions
- ESD performance:

Human body model > 2000V

Machine model > 200V

■ Leadless DQFN Pb-Free package

Note 1: To ensure the high impedance state during power up and power down, \overline{OE}_n should be tied to V_{CC} through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver


Ordering Code:

Order Number	Package Number	Package Description			
74VCX2245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
74VCX2245BQX (Note 2)	MLP020B	Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm			
74VCX2245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			

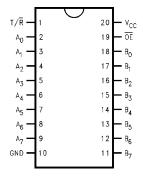
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Note 2: DQFN package available in Tape and Reel only.

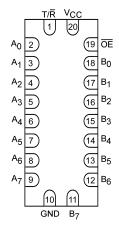
Logic Symbol

Pin Descriptions

Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs


Quiet Series™ is a trademark of Fairchild Semiconductor Corporation.

© 2005 Fairchild Semiconductor Corporation

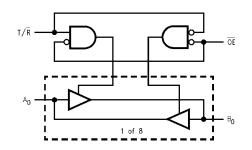

DS500170

Connection Diagrams

Pin Assignments for SOIC and TSSOP

Pad Assignments for DQFN

(Top Through View)


Truth Table

Inputs		Outputs	
OE T/R			
L	L	Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇	
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇	
Н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇ (Note 3)	

- H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Immaterial
 Z = High Impedance

Note 3: Unused bus terminals during HIGH Z State must be held HIGH or LOW.

Logic Diagram

Absolute Maximum Ratings(Note 4)

 $\label{eq:supply Voltage VCC} Supply Voltage (V_{CC}) & -0.5V to +4.6V \\ DC Input Voltage (V_I) & -0.5V to +4.6V \\ \end{array}$

DC Output Voltage (V_O)

Outputs 3-STATE -0.5 V to +4.6 V Outputs Active (Note 5) $-0.5 \text{V to } \text{V}_{\text{CC}} +0.5 \text{V}$ DC Input Diode Current (I_{IK}) V_I < 0V -50 mA

DC Output Diode Current (I_{OK})

 $\begin{array}{c} \rm V_O < 0V & -50 \ mA \\ \\ \rm V_O > V_{CC} & \pm 50 \ mA \\ \\ \rm DC \ Output \ Source/Sink \ Current & \pm 50 \ mA \\ \end{array}$

 (I_{OH}/I_{OL})

DC V $_{\rm CC}$ or Ground Current ± 100 mA Storage Temperature (T $_{\rm STG}$) $-65^{\circ}{\rm C}$ to $+150^{\circ}{\rm C}$

Recommended Operating Conditions (Note 6)

Power Supply Voltage (V_{CC})

 Operating
 1.4V to 3.6V

 Input Voltage
 -0.3V to 3.6V

Output Voltage (V_O)

Output Current in I_{OH}/I_{OL} - A Outputs

 $\begin{array}{lll} \text{V}_{\text{CC}} = 3.0 \text{V to } 3.6 \text{V} & \pm 24 \text{ mA} \\ \text{V}_{\text{CC}} = 2.3 \text{V to } 2.7 \text{V} & \pm 18 \text{ mA} \\ \text{V}_{\text{CC}} = 1.65 \text{V to } 2.3 \text{V} & \pm 6 \text{ mA} \\ \text{V}_{\text{CC}} = 1.4 \text{V to } 1.65 \text{V} & \pm 2 \text{ mA} \end{array}$

Output Current in I_{OH}/I_{OL} - B Outputs

 $\begin{array}{lll} \text{V}_{\text{CC}} = 3.0 \text{V to } 3.6 \text{V} & & \pm 12 \text{ mA} \\ \text{V}_{\text{CC}} = 2.3 \text{V to } 2.7 \text{V} & & \pm 8 \text{ mA} \\ \text{V}_{\text{CC}} = 1.65 \text{V to } 2.3 \text{V} & & \pm 3 \text{ mA} \\ \text{V}_{\text{CC}} = 1.4 \text{V to } 1.65 \text{V} & & \pm 1 \text{ mA} \end{array}$

Free Air Operating Temperature (T_A) -40°C to +85°C

Minimum Input Edge Rate ($\Delta t/\Delta V$)

 $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	Min	Max	Units
Oyboi	i didilicioi	Conditions	(V)		Mux	Oillio
V _{IH}	HIGH Level Input Voltage		2.7 - 3.6	2.0		
			2.3 - 2.7	1.6		V
			1.65 - 2.3	0.65 x V _{CC}		V
			1.4 - 1.6	0.65 x V _{CC}		
V _{IL}	LOW Level Input Voltage		2.7 - 3.6		0.8	
			2.3 - 2.7		0.7	V
			1.65 - 2.3		0.35 x V _{CC}	V
			1.4 - 1.6		0.35 x V _{CC}	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
	A Outputs	I _{OH} = -12 mA	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
		$I_{OH} = -100 \mu A$	2.3 - 2.7	V _{CC} - 0.2		
		I _{OH} = -6 mA	2.3	2.0		V
		I _{OH} = -12 mA	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
		$I_{OH} = -100 \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		I _{OH} = -8 mA	1.65	1.25		
		$I_{OH} = -100 \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		I _{OH} = -2 mA	1.4	1.05		

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
	B Outputs	I _{OH} = -6 mA	2.7	2.2		
		I _{OH} = -8 mA	3.0	2.4		
		I _{OH} = -12 mA	3.0	2.2		
		$I_{OH} = -100 \mu A$	2.3 - 2.7	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	2.0		V
		$I_{OH} = -6 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -8 \text{ mA}$	2.3	1.7		
		$I_{OH} = -100 \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -3 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -1 \text{ mA}$	1.4	1.05		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.7 - 3.6		0.2	
	A Outputs	$I_{OL} = 12 \text{ mA}$	2.7		0.4	
		$I_{OL} = 18 \text{ mA}$	3.0		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
		$I_{OL} = 100 \mu A$	2.3 - 2.7		0.2	
		$I_{OL} = 12 \text{ mA}$	2.3		0.4	V
		$I_{OL} = 18 \text{ mA}$	2.3		0.6	
		$I_{OL} = 100 \mu A$	1.65 - 2.3		0.2	
		I _{OL} = 6 mA	1.65		0.3	
		$I_{OL} = 100 \mu A$	1.4 - 1.6		0.2	
		I _{OL} = 2 mA	1.4		0.35	
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.7 - 3.6		0.2	
	B Outputs	I _{OL} = 6 mA	2.7		0.4	
		$I_{OL} = 8 \text{ mA}$	3.0		0.55	
		$I_{OL} = 12 \text{ mA}$	3.0		0.8	
		$I_{OL} = 100 \mu A$	2.7- 2.7		0.2	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		$I_{OL} = 8 \text{ mA}$	2.3		0.6	
		$I_{OL} = 100 \mu A$	1.65 - 2.3		0.2	
		$I_{OL} = 3 \text{ mA}$	1.65		0.3	
		$I_{OL} = 100 \mu A$	1.4 - 1.6		0.2	
		I _{OL} = 1 mA	1.4		0.35	
II	Input Leakage Current	$0 \le V_I \le 3.6V$	1.4 - 3.6		±5.0	μΑ
l _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	1.4 - 3.6		±10	μА
		$V_I = V_{IH}$ or V_{IL}				por t
l _{OFF}	Power Off Leakage Current	$0 \leq \left(V_I, \ V_O\right) \leq 3.6V$	0		10	μА
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.4 - 3.6		20	μА
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 7)}$	1.4 - 3.6		±20	μ.,
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μΑ

Note 7: Outputs disabled or 3-STATE only.

$T_A = -40^{\circ}C$ to $+85^{\circ}C$ v_{cc} Figure Symbol Conditions Units (V) Number t_{PHL} Propagation Delay $C_L = 30 \text{ pF}, R_L = 500\Omega$ 3.3 ± 0.3 0.6 3.5 Figures 2.5 ± 0.2 0.8 4.2 B_n to A_n t_{PLH} 1.8 ± 0.15 1.5 8.4 $C_L = 15 \text{ pF}, R_L = 2k\Omega$ 1.5 ± 0.1 1.0 Figures 5, 6 0.6 Output Enable Time $C_L = 30 \text{ pF}, R_L = 500\Omega$ 3.3 ± 0.3 4.5 t_{PZL} Figures 2.5 ± 0.2 5.6 B_n to A_n 0.8 t_{PZH} 1.8 ± 0.15 1.5 9.8 $C_L = 15 \text{ pF}, R_L = 2k\Omega$ 1.5 ± 0.1 1.0 19.6 Figures 5, 7, 8 Output Disable Time $C_L = 30 \text{ pF}, R_L = 500\Omega$ 3.3 ± 0.3 0.6 3.6 t_{PLZ} Figures 2.5 ± 0.2 0.8 4.0 t_{PHZ} B_n to A_n 1, 3, 4 ns 1.8 ± 0.15 1.5 7.2 $C_L = 15 \text{ pF}, R_L = 2k\Omega$ 1.5 ± 0.1 1.0 14.4 Figures 5, 7, 8 Output to Output Skew $C_L = 30 \text{ pF}, R_L = 500\Omega$ 3.3 ± 0.3 toshl (Note 9) 2.5 ± 0.2 0.5 toslh 1.8 ± 0.15 0.75 $C_L = 15 \text{ pF, } R_L = 2k\Omega$ $\textbf{1.5} \pm \textbf{0.1}$ 1.5 Propagation Delay $C_L = 30 \text{ pF}, R_L = 500\Omega$ 3.3 ± 0.3 0.6 4.4 t_{PHL} A_n to B_n 2.5 ± 0.2 0.8 5.6 t_{PLH} 1.8 ± 0.15 1.5 9.8

 1.5 ± 0.1

 3.3 ± 0.3

 2.5 ± 0.2

 1.8 ± 0.15

 1.5 ± 0.1

 3.3 ± 0.3

 2.5 ± 0.2

 1.8 ± 0.15

 1.5 ± 0.1

1.0

0.8

1.5

1.0

0.6

0.8

1.5

1.0

19.6

6.6

9.8

19.6

4.2

4.7

8.5

16.9

Figures 5, 6

Figures

1, 3, 4

Figures 5, 7, 8

Figures

1, 3, 4

Figures

 $C_L = 15 \text{ pF}, R_L = 2k\Omega$

 $C_L = 30 \text{ pF, } R_L = 500 \Omega$

 $C_L = 15 \text{ pF}, R_L = 2k\Omega$

 $C_L = 30 \text{ pF}, R_L = 500\Omega$

 $C_L = 15 \text{ pF}, R_L = 2k\Omega$

Note 8: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Output Enable Time

Output Disable Time

A_n to B_n

A_n to B_n

 t_{PZL}

 t_{PZH}

 t_{PLZ}

 t_{PHZ}

AC Electrical Characteristics (Note 8)

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toSHL) or LOW-to-HIGH (toSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Cymbol	raiametei	Conditions	(V)	Typical	Offics
V _{OLP}	Quiet Output Dynamic Peak V _{OL} ,	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.3	
	B to A		2.5	0.7	V
			3.3	1.0	
	Quiet Output Dynamic Peak V _{OL} ,	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.2	
	A to B		2.5	0.45	V
			3.3	0.65	
V _{OLV}	Quiet Output Dynamic Valley V _{OL} ,	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.3	
	B to A		2.5	-0.7	V
			3.3	-1.0	
	Quiet Output Dynamic Valley, V _{OL} ,	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.2	
	A to B		2.5	-0.45	V
			3.3	-0.65	
V _{OHV}	Quiet Output Dynamic Valley VOH,	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.3	
	B to A		2.5	1.7	V
			3.3	2.0	
	Quiet Output Dynamic Valley V _{OH} ,	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
	A to B		2.5	2.0	V
			3.3	2.5	

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
Cymbol	T di diffetei	Conditions	Typical	
C _{IN}	Input Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	6	pF
C _{I/O}	Input/Output Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20	pF

AC Loading and Waveforms (V $_{CC}$ 3.3V \pm 0.3V to 1.8V \pm 0.15V)

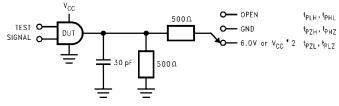


FIGURE 1. AC Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$;
	V_{CC} x 2 at V_{CC} = 2.5V \pm 0.2V; 1.8V \pm 0.15V
t _{PZH} , t _{PHZ}	GND

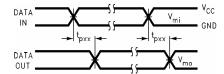


FIGURE 2. Waveform for Inverting and Non-inverting Functions

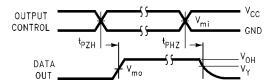


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

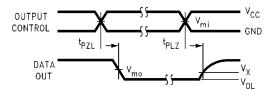


FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V _{CC}			
Symbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V	
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	
V _x	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V	
V _y	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V	

AC Loading and Waveforms (V $_{CC}$ 1.5V \pm 0.1V)

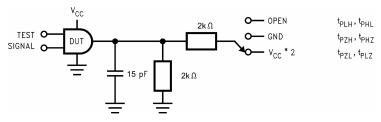


FIGURE 5. AC Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V_{CC} x 2 at V_{CC} = 1.5V ± 0.1V
t _{PZH} , t _{PHZ}	GND

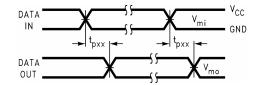


FIGURE 6. Waveform for Inverting and Non-inverting Functions

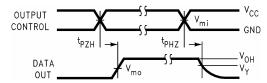


FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

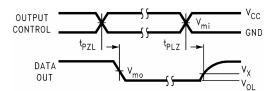
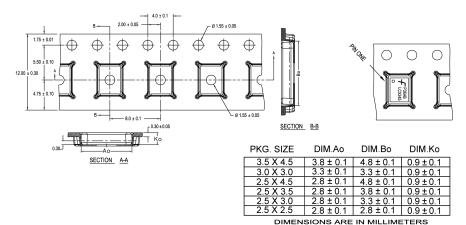


FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

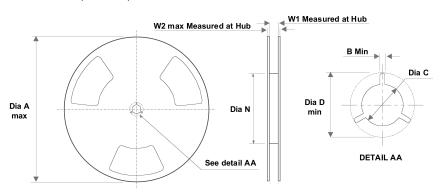

Symbol	v _{cc}
Cymbol	1.5V ± 0.1V
V _{mi}	V _{CC} /2
V _{mo}	V _{CC} /2
V _x	V _{OL} + 0.1V
V _y	V _{OH} – 0.1V

Tape and Reel Specification

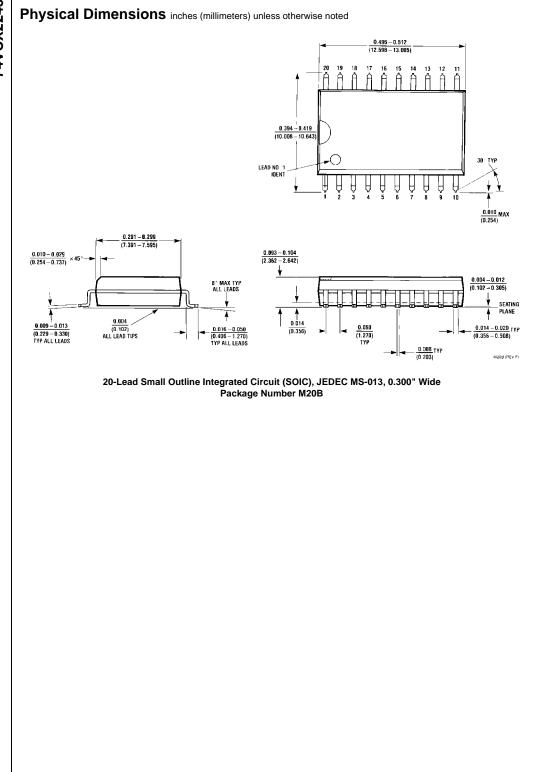
Tape Format for DQFN

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
BQX	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

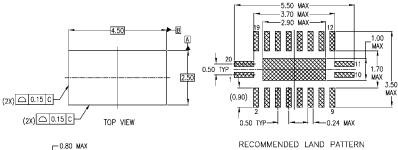
TAPE DIMENSIONS inches (millimeters)

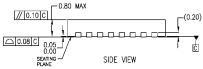


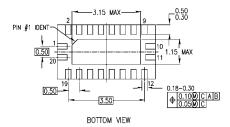
NOTES: unless otherwise specified


- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.

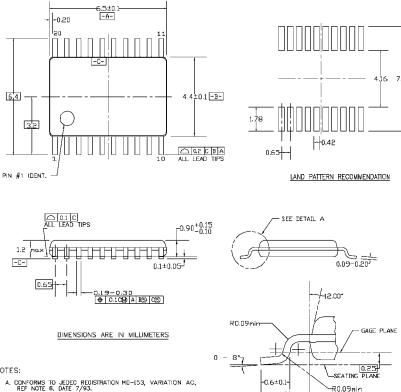
- 2. Smallest allowable bending radius.
 3. Thru hole inside cavity is centered within cavity.
 4. Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- 8. Controlling dimension is millimeter. Diemension in inches rounded.


REEL DIMENSIONS inches (millimeters)




Tape Size	Α	В	С	D	N	W1	W2
12 mm	13.0	0.059	0.512	0.795	7.008	0.488	0.724
	(330)	(1.50)	(13.00)	(20.20)	(178)	(12.4)	(18.4)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC
 B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP020BrevA

Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm Package Number MLP020B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:

- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M. 1982.

R0.09min DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com