NLAST4599

Low Voltage Single Supply SPDT Analog Switch

The NLAST4599 is an advanced high speed CMOS single pole double throw analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This switch controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The device has been designed so the ON resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Select Pin Compatible with TTL Levels
- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: $\mathrm{HBM}>2000 \mathrm{~V} ; \mathrm{MM}>200 \mathrm{~V}$
- Chip Complexity: 38 FETs
- Pb -Free Packages are Available

Figure 1. Pin Assignment

Figure 2. Logic Symbol

(Note: Microdot may be in either location)
*Date Code orientation and/or position and underbar may vary depending upon manufacturing location.

FUNCTION TABLE

Select	ON Channel
L	NC
H	NO

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Positive DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Analog Input Voltage (V_{NO} or $\mathrm{V}_{\mathrm{COM}}$)	$\mathrm{V}_{\text {IS }}$	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}+0.5$	V
Digital Select Input Voltage	$\mathrm{V}_{\text {IN }}$	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$	V
DC Current, Into or Out of Any Pin	IK	± 50	mA
$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { SC-88 } \\ & \text { TSOP6 }\end{array}$	P_{D}	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	mW
Storage Temperature Range	TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature Under Bias	T_{J}	150	${ }^{\circ} \mathrm{C}$
Human Body Model (Note 2) Machine Model (Note 3) ESD Withstand Voltage Charged Device Model (Note 4)	$\mathrm{V}_{\text {ESD }}$	$\begin{gathered} 2000 \\ 200 \\ \mathrm{~N} / \mathrm{A} \end{gathered}$	V
Latchup Performance \quad Above $\mathrm{V}_{\text {CC }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	I LATCHUP	± 300	mA
$\begin{array}{lr}\text { Thermal Resistance } & \text { SC-88 } \\ \text { TSOP6 }\end{array}$	$\theta_{\text {JA }}$	$\begin{aligned} & 333 \\ & 333 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V_{CC}	2.0	5.5	V
Digital Select Input Voltage	V_{IN}	GND	5.5	V
Analog Input Voltage (NC, NO, COM)	V_{IS}	GND	V_{CC}	V
Operating Temperature Range	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Time SELECT	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			ns / V
			0	100

DEVICE JUNCTION TEMPERATURE VERSUS TIME

 TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Select Input		V_{IH}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
Maximum Low-Level Input Voltage, Select Input		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
Maximum Input Leakage Current, Select Input	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	1 N	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Power Off Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	IofF	0	± 10	± 10	± 10	$\mu \mathrm{A}$
Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	I_{CC}	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Maximum "ON" Resistance (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \end{aligned}$	R_{ON}	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} \hline 105 \\ 55 \\ 40 \\ 35 \end{gathered}$	Ω
ON Resistance Flatness (Figures 17 - 23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IIN}^{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	RFLAT (ON)	4.5	4	4	5	Ω
ON Resistance Match Between Channels	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{INN}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{R}_{\mathrm{ON}}$ (ON)	4.5	2	2	3	Ω
NO or NC Off Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	${ }^{\text {INC(OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	5.5	1	10	100	nA
COM ON Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} 1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{NC}} \text { floating } \\ & \mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{NO}} \text { floating } \\ & \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	ICOm(ON)	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Parameter	Test Conditions	Symbol	V_{Cc} (V)	$\mathrm{V}_{\text {IS }}$ (V)	Guaranteed Max Limit					$<125^{\circ} \mathrm{C}$		Unit
					-55 to $25^{\circ} \mathrm{C}$			$<85{ }^{\circ} \mathrm{C}$				
					Min	Typ*	Max	Min	Max	Min	Max	
Turn-On Time (Figures 12 and 13)	$R_{L}=300 \Omega, C_{L}=35 p F$ (Figures 5 and 6)	ton	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 23 \\ 16 \\ 11 \\ 9 \end{gathered}$	$\begin{aligned} & 28 \\ & 21 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	ns
Turn-Off Time (Figures 12 and 13)	$R_{L}=300 \Omega, C_{L}=35 p F$ (Figures 5 and 6)	toff	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 12 \\ 10 \\ 9 \\ 8 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	1 1 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
Minimum Break-BeforeMake Time	$\begin{aligned} & V_{\text {IS }}=3.0 \mathrm{~V} \text { (Figure 4) } \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$t_{\text {BBM }}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	1 1 1 1	$\begin{gathered} 12 \\ 11 \\ 6 \\ 5 \end{gathered}$		1 1 1 1		1 1 1 1		ns
			Typical @ 25, VCC = 5.0 V									
Maximum Input Capacitance, Select Input Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on)		$\begin{gathered} \mathrm{C}_{\mathrm{IN}} \\ \mathrm{C}_{\mathrm{NO}} \text { or } \mathrm{C}_{\mathrm{NC}} \\ \mathrm{C}_{\mathrm{COM}} \\ \mathrm{C}_{(\mathrm{ON})} \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 10 \\ 20 \end{gathered}$									pF

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Parameter	Condition	Symbol	v_{cc}	Typical $25^{\circ} \mathrm{C}$	Unit
Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and $G N D$ (Figure 7)	BW	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \\ & 200 \end{aligned}$	MHz
Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ @ 100 kHz to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ONL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Off-Channel Isolation (Figure 10)	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\text {IS }}=1 \mathrm{VRMS} \\ & \mathrm{~V}_{\text {IN }} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and GND } \\ & \text { (Figure 7) } \end{aligned}$	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \end{aligned}$	dB
Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & V_{I N}=V_{C C} \text { to } G N D, F_{I S}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \mathrm{~ns} \\ & \mathrm{R}_{\text {IS }}=0 \Omega, C_{L}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }} \text { (Figure 8) } \end{aligned}$	Q	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{Rgen}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V} \text { PP } \text { sine wave } \end{aligned}$	THD	5.5	0.1	\%

ORDERING INFORMATION

Device	Device Nomenclature					Package	Shipping ${ }^{\dagger}$
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NLAST4599DFT2	NL	AS	4599	DF	T2	SC-88/SC-70/SOT-363	3000/Tape \& Reel
NLAST4599DFT2G						$\begin{gathered} \text { SC-88/SC-70/SOT-363 } \\ \text { (Pb-Free) } \end{gathered}$	
NLAST4599DTT1				DT	T1	TSOP-6	
NLAST4599DTT1G						$\begin{gathered} \hline \text { TSOP-6 } \\ \text { (Pb-Free) } \end{gathered}$	

[^0]

Figure 4. t_{BB} (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAST4599

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\mathrm{ISO}}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V $\mathrm{V}_{\text {ONL }}$

Output

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage vs. Temperature

Figure 10. Bandwidth and Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}} \mathrm{vs} . \mathrm{V}_{\mathrm{CC}}$ at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 11. Phase vs. Frequency

Figure 13. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. Temp

Figure 15. Charge Injection vs. COM Voltage

Figure 16. Icc vs. Temp, $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V} \& 5 \mathrm{~V}$

Figure 18. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$ Temp, $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$

Figure 20. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$

Figure 17. R_{ON} vs. $\mathrm{V}_{\mathrm{Cc}}, \mathrm{Temp}^{\mathrm{C}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 19. RoN vs. Temp, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 21. $\mathrm{R}_{\mathrm{ON}} \mathrm{Vs}$. Temp, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 22. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 23. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

Figure 24. Tape Ends for Finished Goods

Figure 25. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation

NLAST4599

Figure 26. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	G	t Max
8 mm	$\mathrm{~T} 1, \mathrm{~T} 2$	178 mm $(7 \mathrm{in})$	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$ $(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	14.4 mm

Figure 27. Reel Winding Direction

NLAST4599

PACKAGE DIMENSIONS

TSOP-6
CASE 318G-02
ISSUE S

NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.38	0.50	0.010	0.014	0.020
c	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
e	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
$\mathbf{H}_{\text {E }}$	2.50	2.75	3.00	0.099	0.108	0.118
$\boldsymbol{\theta}$	0°	-	10°	0°	-	10°

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLAST4599

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363
 CASE 419B-02
 ISSUE W

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH
2. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.95	1.10	0.031	0.037	0.043
A1	0.00	0.05	0.10	0.000	0.002	0.004
A3	0.20 REF			0.008 REF		
b	0.10	0.21	0.30	0.004	0.008	0.012
C	0.10	0.14	0.25	0.004	0.005	0.010
D	1.80	2.00	2.20	0.070	0.078	0.086
E	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSCC			0.026 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012
H $_{\text {F }}$	2.00	2.10	2.20	0.078	0.082	0.086

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

