ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC33272A, MC33274A, NCV33272A, NCV33274A

Operational Amplifiers, Single Supply, High Slew Rate, Low Input Offset Voltage

The MC33272/74 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts. This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip-R-Trim element for input offset voltage reduction. The MC33272/74 series of operational amplifiers exhibits low input offset voltage and high gain bandwidth product. Dual -doublet frequency compensation is used to increase the slew rate while maintaining low input noise characteristics. Its all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, and an excellent phase and gain margin. It also provides a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance.

Features

- Input Offset Voltage Trimmed to $100 \mu \mathrm{~V}$ (Typ)
- Low Input Bias Current: 300 nA
- Low Input Offset Current: 3.0 nA
- High Input Resistance: $16 \mathrm{M} \Omega$
- Low Noise: $18 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1.0 \mathrm{kHz}$
- High Gain Bandwidth Product: $24 \mathrm{MHz} @ 100 \mathrm{kHz}$
- High Slew Rate: $10 \mathrm{~V} / \mu \mathrm{s}$
- Power Bandwidth: 160 kHz
- Excellent Frequency Stability
- Unity Gain Stable: w/Capacitance Loads to 500 pF
- Large Output Voltage Swing: +14.1 V/ -14.6 V
- Low Total Harmonic Distortion: 0.003\%
- Power Supply Drain Current: 2.15 mA per Amplifier
- Single or Split Supply Operation: +3.0 V to +36 V or $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- ESD Diodes Provide Added Protection to the Inputs
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- Pb-Free Packages are Available

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC} to V_{EE}	+36	V
Input Differential Voltage Range	$V_{\text {IDR }}$	Note 1	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	Note 1	V
Output Short Circuit Duration (Note 2)	$\mathrm{t}_{\text {SC }}$	Indefinite	sec
Maximum Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
ESD Protection at Any Pin - Human Body Model - Machine Model	$\mathrm{V}_{\text {esd }}$	$\begin{gathered} 2000 \\ 200 \end{gathered}$	V
Maximum Power Dissipation	P_{D}	Note 2	mW
Operating Temperature Range MC33272A, MC33274A NCV33272A, NCV33274A	T_{A}	$\begin{gathered} -40 \text { to }+85 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Either or both input voltages should not exceed V_{CC} or V_{EE}.
2. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded (see Figure 2).

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}(\mathrm{NCV} 33272 \mathrm{~A}) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}(\mathrm{NCV} 33274 \mathrm{~A}) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	3	$\left\|\mathrm{V}_{10}\right\|$	-	$\begin{gathered} 0.1 \\ - \\ - \\ - \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.8 \\ & 2.5 \\ & 3.5 \\ & 2.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}$	3	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ & \hline \end{aligned}$	4, 5	IB			$\begin{aligned} & 650 \\ & 800 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ & \hline \end{aligned}$		\|lıl			$\begin{aligned} & 65 \\ & 80 \end{aligned}$	nA
Common Mode Input Voltage Range ($\Delta \mathrm{V}_{\mathrm{IO}}=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6	VICR	V_{EE} to ($\left.\mathrm{V}_{\mathrm{CC}}-1.8\right)$			V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ & \hline \end{aligned}$	7	Avol	$\begin{aligned} & 90 \\ & 86 \end{aligned}$	100	-	dB
$\begin{gathered} \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 1.0 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \left(\mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\right) \\ \mathrm{R}_{\mathrm{L}}=2 . \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{gathered}$	$8,9,12$ 10, 11	$\mathrm{V}_{\mathrm{O}}+$ $\mathrm{V}_{\mathrm{O}}-$ $\mathrm{V}_{\mathrm{O}}+$ $\mathrm{V}_{\mathrm{O}}{ }^{-}$ V_{OL} V_{OH}	$\begin{gathered} 13.4 \\ - \\ 13.4 \\ - \\ - \\ 3.7 \end{gathered}$	$\begin{gathered} 13.9 \\ -13.9 \\ 14 \\ -14.7 \end{gathered}$	$\begin{gathered} -13.5 \\ - \\ -14.1 \\ 0.2 \\ 5.0 \end{gathered}$	V
Common Mode Rejection ($\mathrm{V}_{\text {in }}=+13.2 \mathrm{~V}$ to -15 V)	13	CMR	80	100	-	dB
Power Supply Rejection $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V},+5.0 \mathrm{~V} /-15 \mathrm{~V},+15 \mathrm{~V} /-5.0 \mathrm{~V}$	14, 15	PSR	80	105	-	dB
Output Short Circuit Current ($\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}$, Output to Ground) Source Sink	16	Isc	$\begin{aligned} & +25 \\ & -25 \end{aligned}$	$\begin{aligned} & +37 \\ & -37 \end{aligned}$	-	mA
$\begin{aligned} & \text { Power Supply Current Per Amplifier }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	17	$I_{\text {cc }}$	-	2.15	$\begin{gathered} 2.75 \\ 3.0 \\ 2.75 \end{gathered}$	mA

$\begin{array}{lll}\text { 3. MC33272A, MC33274A } & \mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C} & \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C} \\ \text { NCV33272A, NCV33274A } & \mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C} & \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}\end{array}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~A}_{\mathrm{V}}=+1.0 \mathrm{~V}\right)$	18, 33	SR	8.0	10	-	V/us
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	19	GBW	17	24	-	MHz
AC Voltage Gain ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=20 \mathrm{kHz}$)	20, 21, 22	Avo	-	65	-	dB
Unity Gain Bandwidth (Open Loop)		BW	-	5.5	-	MHz
Gain Margin ($\left.\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}\right)$	23, 24, 26	A_{m}	-	12	-	dB
Phase Margin ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)	23, 25, 26	ϕ_{m}	-	55	-	Deg
Channel Separation ($f=20 \mathrm{~Hz}$ to 20 kHz)	27	CS	-	-120	-	dB
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{THD} \leq 1.0 \%$)		BW_{P}	-	160	-	kHz
Total Harmonic Distortion $\left(R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{~A}_{\mathrm{V}}=+1.0\right)$	28	THD	-	0.003	-	\%
Open Loop Output Impedance ($\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{MHz}$)	29	$\left\|\mathrm{Z}_{\mathrm{O}}\right\|$	-	35	-	Ω
Differential Input Resistance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)		$\mathrm{R}_{\text {in }}$	-	16	-	$\mathrm{M} \Omega$
Differential Input Capacitance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)		$\mathrm{C}_{\text {in }}$	-	3.0	-	pF
Equivalent Input Noise Voltage ($\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$)	30	e_{n}	-	18	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ($\mathrm{f}=1.0 \mathrm{kHz}$)	31	i_{n}	-	0.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Equivalent Circuit Schematic
(Each Amplifier)

Figure 2. Maximum Power Dissipation versus Temperature

Figure 6. Input Common Mode Voltage Range versus Temperature

Figure 3. Input Offset Voltage versus Temperature for Typical Units

Figure 4. Input Bias Current versus
Figure 4. Input Bias Current v
Common Mode Voltage

Figure 5. Input Bias Current
versus Temperature

Figure 7. Open Loop Voltage Gain versus Temperature

Figure 8. Split Supply Output Voltage Swing versus Supply Voltage

Figure 9. Split Supply Output Saturation Voltage versus Load Current

Figure 10. Single Supply Output Saturation Voltage versus Load Resistance to Ground

Figure 11. Single Supply Output Saturation Voltage versus Load Resistance to $\mathrm{V}_{\text {cc }}$

Figure 12. Output Voltage versus Frequency

Figure 13. Common Mode Rejection versus Frequency

Figure 14. Positive Power Supply Rejection versus Frequency

Figure 16. Output Short Circuit Current versus Temperature

Figure 18. Normalized Slew Rate versus Temperature

Figure 15. Negative Power Supply Rejection versus Frequency

Figure 17. Supply Current versus Supply Voltage

Figure 19. Gain Bandwidth Product versus Temperature

Figure 20. Voltage Gain and Phase versus Frequency

Figure 22. Open Loop Voltage Gain and Phase versus Frequency

Figure 24. Open Loop Gain Margin versus Temperature

Figure 21. Gain and Phase versus Frequency

Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance

Figure 25. Phase Margin versus Temperature

Figure 26. Phase Margin and Gain Margin versus Differential Source Resistance

Figure 28. Total Harmonic Distortion versus Frequency

Figure 30. Input Referred Noise Voltage versus Frequency

Figure 27. Channel Separation versus Frequency

Figure 29. Output Impedance versus Frequency

Figure 31. Input Referred Noise Current versus Frequency

Figure 32. Percent Overshoot versus Load Capacitance

$\mathrm{t}, \mathrm{TIME}(2.0 \mu \mathrm{~s} / \mathrm{DIV})$
Figure 33. Non-inverting Amplifier Slew Rate for the MC33274

Figure 35. Small Signal Transient Response for MC33274

t, TIME ($2.0 \mathrm{~ns} /$ DIV)
Figure 34. Non-inverting Amplifier Overshoot for the MC33274

Figure 36. Large Signal Transient Response for MC33274

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC33272AD	SOIC-8	
MC33272ADG	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC33272ADR2	SOIC-8	
MC33272ADR2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
MC33272AP	PDIP-8	
MC33272APG	$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
NCV33272ADR2*	SOIC-8	
NCV33272ADR2G*	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
MC33274AD	SOIC-14	
MC33274ADG	$\begin{gathered} \text { SOIC-14 } \\ \text { (Pb-Free) } \end{gathered}$	55 Units / Rail
MC33274ADR2	SOIC-14	
MC33274ADR2G	SOIC-14 ($\mathrm{Pb}-\mathrm{Free}$)	2500 / Tape \& Reel
MC33274ADTBR2G	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	
MC33274AP	PDIP-14	
MC33274APG	$\begin{aligned} & \hline \text { PDIP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	25 Units / Rail
NCV33274AD*	SOIC-14	
NCV33274ADG*	$\begin{aligned} & \text { SOIC-14 } \\ & \text { (Pb-Free) } \end{aligned}$	55 Units / Rail
NCV33274ADR2*	SOIC-14	
NCV33274ADR2G*	$\begin{aligned} & \hline \text { SOIC-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel
NCV33274ADTBR2G*	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SCALE 1:1

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

PDIP-8
CASE 626-05
ISSUE P
DATE 22 APR 2015

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES
2. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH

DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD
NOT TO EXCEED 0.10 INCH
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR to datum C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	----	0.210	---	5.33		
A1	0.015	----	0.38	---		
A2	0.115	0.195	2.92	4.95		
b	0.014		0.022	0.35		0.56
b2	0.060 TYP		1.52 TYP			
C	0.008	0.014	0.20	0.36		
D	0.355	0.400	9.02	10.16		
D1	0.005	----	0.13	---		
E	0.300	0.325	7.62	8.26		
E1	0.240	0.280	6.10	7.11		
e	0.100	BSC	2.54	BSC		
eB	----	0.430	---	10.92		
L	0.115	0.150	2.92	3.81		
M	----	10°	---	10°		

GENERIC
MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLES ON PAGE 2

PDIP-14
CASE 646-06
ISSUE S
DATE 22 APR 2015

NOTES:

1. DIMENSIONING AND TOLERANCING

DIMENSIONS AIMENSION. li. MEASURED WITH THE PACK AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD F
NOT TO EXCEED 0.10 INCH.
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
	----	0.210	---	5.33
A1	0.015	----	0.38	---
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP		1.52 TYP	
C	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005	----	0.13	---
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
e	0.100	BSC	2.54	BSC
eB	----	0.430	---	10.92
L	0.115	0.150	2.92	3.81
M	----	10°	--	

GENERIC MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\stackrel{\rightharpoonup}{ }$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42428B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-14 | PAGE 1 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
3. EMIT
4. NO

CONNECTION
5. EMITTER
6. BASE
7. COLLECTOR
8. COLLECTOR
9. BASE
10. EMITTER
11. NO

CONNECTION
12. EMITTER
13. BASE
14. COLLECTOR

STYLE 5:
PIN 1. GATE
3. SOURCE
4. NO CONNECTION
4. NO CONNE
. SOURCE
6. DRAIN
7. GATE
. GATE
9. DRAIN
10. SOURCE
11. NO CONNECTION
12. SOURCE
13. DRAIN

STYLE 9:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE . ANODE/CATHODE
7. COMMON ANODE
. COMMON ANODE
9. ANODE/CATHODE
0. ANODE/CATHODE

1. ANODE/CATHODE
2. NO CONNECTION
3. ANODE/CATHODE
4. ANOMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42428B | Electronic versions are uncontrolled except when acessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-14 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
H	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0	\circ	$8{ }^{\circ}$	$0{ }^{\circ}$		
N	0.25	0.50	0.010	0.020		
\mathbf{S}	5.80	6.20	0.228	0.244		

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE 2:
PIN 1. COLLECTOR,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5. P-DRAIN
6. P-DRAIN
7. N -DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-14 NB	PAGE 2 OF 2

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	$0{ }^{\circ}$	8°	0°	8°

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any ans.
rights of others.

ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

