MC74LVX4051

Analog Multiplexer/ Demultiplexer High-Performance Silicon-Gate CMOS

The MC74LVX4051 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low leakage currents. This analog multiplexer/demultiplexer controls analog voltages that may vary across the complete power supply range (from V_{CC} to $\left.\mathrm{V}_{\mathrm{EE}}\right)$.

The LVX4051 is similar in pinout to the LVX8051, the HC4051A, and the metal-gate MC14051B. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

The Channel-Select and Enable inputs are compatible with standard CMOS outputs. These inputs are overvoltage tolerant (OVT) for level translation from 6.0 V down to 3.0 V .

This device has been designed so the ON resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ is more linear over input voltage than the R_{ON} of metal-gate CMOS analog switches and High-Speed CMOS analog switches.

Features

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Analog Power Supply Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=-3.0 \mathrm{~V}$ to +3.0 V
- Digital (Control) Power Supply Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.5$ to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal-Gate, HSL, or VHC Counterparts
- Low Noise
- Designed to Operate on a Single Supply with $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$, or Using Split Supplies up to $\pm 3.0 \mathrm{~V}$
- Break-Before-Make Circuitry
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

QFN16	SOIC-16	TSSOP-16
MN SUFFIX	D SUFFIX	DT SUFFIX
CASE 485AW	CASE 751B	CASE 948F

MARKING DIAGRAMS

16 AABABABH
LVX
4051
ALYW.
○ -
1 昭昭
TSSOP-16

LVX4051	$=$ Specific Device Code
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
Y	Year
WW, W	= Work Week
G or :	Pb-Free Package

(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC74LVX4051

Figure 1. Pin Connection Diagrams
(Top View)

FUNCTION TABLE

Control Inputs				
Enable	C	Select		
B	A	ON Channels		
L	L	L	L	X0
L	L	L	H	X1
L	L	H	L	X2
L	L	H	H	X3
L	H	L	L	X4
L	H	L	H	X5
L	H	H	L	X6
L	H	H	H	X7
H	X	X	X	NONE

X = Don't Care

Figure 2. Logic Diagram
Single-Pole, 8-Position Plus Common Off

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVX4051DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LVX4051DR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC74LVX4051DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LVX4051DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC74LVX4051MNTWG	QFN-16 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{EE}	Negative DC Supply Voltage (Referenced to GND)	-7.0 to +0.5	V
V_{CC}	Positive DC Supply Voltage $\begin{gathered}\text { (Referenced to GND) } \\ \text { (Referenced to } \mathrm{V}_{\mathrm{EE}} \text {) }\end{gathered}$	$\begin{gathered} 0.5 \text { to }+7.0 \\ -0.5 \text { to }+7.0 \end{gathered}$	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage (Referenced to GND)	-0.5 to 7.0	V
I	DC Current, Into or Out of Any Pin	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance $\begin{array}{r}\text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & \hline 143 \\ & 164 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air, } & \text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL 94-V0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{aligned} & \hline>2000 \\ & >200 \\ & >1000 \end{aligned}$	V
LATCHUP	Latchup Performance Above $\mathrm{V}_{\text {CC }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 4)	± 300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A.
2. Tested to EIA/JESD22-A115-A.
3. Tested to JESD22-C101-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{EE}	Negative DC Supply Voltage	(Referenced to GND)	-6.0	GND	V
V_{CC}	Positive DC Supply Voltage	(Referenced to GND) (Referenced to V_{EE})	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage		$\mathrm{V}_{\text {EE }}$	$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	(Note 5) (Referenced to GND)	0	6.0	V
T_{A}	Operating Temperature Range, All Package Types		-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise/Fall Time (Channel Select or Enable Inputs)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ns/V

5. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

TIME, YEARS
Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs		$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.10 \\ & 3.15 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.10 \\ & 3.15 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.10 \\ & 3.15 \\ & 4.2 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Channel-Select or Enable Inputs		$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.6 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.6 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.6 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
I_{N}	Maximum Input Leakage Current, Channel-Select or Enable Inputs	$\mathrm{V}_{\mathrm{IN}}=6.0$ or GND	0 V to 6.0 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	Channel Select, Enable and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	4.0	40	80	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	v_{EE}	Guaranteed Limit			Unit	
					-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
R ON	Maximum "ON" Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \\| \mathrm{S} \mid=2.0 \mathrm{~mA} \\ & \text { (Figure } 4) \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 86 \\ & 37 \\ & 26 \end{aligned}$	$\begin{gathered} 108 \\ 46 \\ 33 \end{gathered}$	$\begin{gathered} 120 \\ 55 \\ 37 \end{gathered}$	Ω	
$\Delta \mathrm{R}_{\text {ON }}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \mid \mathrm{IS}_{\mathrm{S}}=2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 15 \\ & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	Ω	
$\mathrm{I}_{\text {off }}$	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \\ & \text { Switch Off (Figure 3) } \\ & \hline \end{aligned}$	$\begin{gathered} 5.5 \\ +3.0 \end{gathered}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$	
	Maximum Off-Channel Leakage Current, Common Channel	$\begin{aligned} & V_{\text {in }}=V_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \end{aligned}$ Switch Off (Figure 4)	$\begin{gathered} 5.5 \\ +3.0 \end{gathered}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		
$\mathrm{I}_{\text {on }}$	Maximum On-Channel Leakage Current, Channel-to-Channel	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ;$ Switch-to-Switch = V_{CC} or GND; (Figure 5)	$\begin{gathered} \hline 5.5 \\ +3.0 \end{gathered}$	$\begin{gathered} \hline 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$	

AC CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	$\mathrm{v}_{\mathrm{EEE}}$	Guaranteed Limit				Unit
					-55 to $25^{\circ} \mathrm{C}$		$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
					Min	Typ*			
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	3.0	0.0	1.0	6.5	-	-	ns
	Time	$V_{\text {IS }}=V_{\text {CC }}$	4.5	0.0	1.0	5.0	-	-	
		$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 12 and 13)	3.0	-3.0	1.0	3.5	-	-	

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Symbol	Parameter	v_{cc}	V_{EE}	Guaranteed Limit							Unit
				-55 to $25^{\circ} \mathrm{C}$			$\leq 85{ }^{\circ} \mathrm{C}$		$\leq 125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Channel-Select to Analog Output (Figures 16 and 17)	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			$\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & 45 \\ & 30 \\ & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \text { tpLZ, } \\ & t_{\text {PHZ }} \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figures 14 and 15)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			$\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & 45 \\ & 30 \\ & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PzL}}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figures 14 and 15)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			40 28 23 23		45 30 25 25		50 35 30 28	ns

$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Figure 18) (Note 6)		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$	pF
			45	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance, Channel-Select or Enable Inputs		10	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Maximum Capacitance (All Switches Off)	Analog I/O Common O/l Feedthrough	$\begin{aligned} & 10 \\ & 10 \\ & 1.0 \end{aligned}$	pF

6. Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}^{2} f+I_{C C} V_{C C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

Symbol	Parameter	Condition	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	$\mathrm{v}_{\mathrm{EE}}^{\mathrm{V}}$	Typ	Unit
					$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Ref and Test Attn }=10 \mathrm{~dB} \\ & \text { Source Amplitude }=0 \mathrm{~dB} \\ & \text { (Figure 7) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	MHz
$\mathrm{V}_{\text {ISO }}$	Off-Channel Feedthrough Isolation	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ Adjust Network Analyzer output to 10 dBm on each output from the power splitter (Figures 8 and 9)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline-70 \\ & -70 \\ & -70 \\ & -70 \end{aligned}$	dB
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$V_{I S}=1 / 2\left(V_{C C}-V_{E E}\right)$ Adjust Network Analyzer output to 10 dBm on each output from the power splitter (Figure 11)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Q	Charge Injection	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE},} \mathrm{f}_{\mathrm{IS}}=1 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ $R_{\text {IS }}=0 \Omega, C_{L}=1000 \mathrm{pF}, \mathrm{Q}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }}$ (Figure 10)	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 12 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise	$\mathrm{f}_{\mathrm{IS}}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ $\mathrm{V}_{\text {IS }}=5.0 \mathrm{~V}_{\mathrm{PP}}$ sine wave $\mathrm{V}_{\text {IS }}=6.0 \mathrm{~V}_{\mathrm{PP}}$ sine wave (Figure 19)	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	\%

Figure 4. On Resistance, Test Set-Up

Figure 5. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

Figure 6. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

Figure 7. Maximum On Channel Bandwidth, Test Set-Up

MC74LVX4051

Figure 8. Maximum Off Channel Feedthrough Isolation, Test Set-Up

Figure 9. Maximum Common-Channel Feedthrough Isolation, Test Set-Up

MC74LVX4051

*Includes all probe and jig capacitance.

Figure 10. Charge Injection, Test Set-Up

Figure 11. Maximum On Channel Feedthrough On Loss, Test Set-Up

Figure 12. Break-Before-Make, Test Set-Up
Figure 13. Break-Before-Make Time

Figure 14. Propagation Delays, Channel Select to Analog Out

Figure 16. Propagation Delays, Enable to Analog Out

*Includes all probe and jig capacitance.
Figure 15. Propagation Delay, Test Set-Up Channel Select to Analog Out

Figure 17. Propagation Delay, Test Set-Up Enable to Analog Out

MC74LVX4051

Figure 18. Power Dissipation Capacitance, Test Set-Up

Figure 19. Total Harmonic Distortion, Test Set-Up

MC74LVX4051

APPLICATIONS INFORMATION

The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}=\text { logic high } \\
\mathrm{GND}=0 \mathrm{~V}=\text { logic low }
\end{gathered}
$$

The maximum analog voltage swing is determined by the supply voltages V_{CC} and V_{EE}. The positive peak analog voltage should not exceed V_{CC}. Similarly, the negative peak analog voltage should not go below V_{EE}. In this example, the difference between V_{CC} and V_{EE} is five volts. Therefore, using the configuration of Figure 21, a maximum analog signal of five volts peak-to-peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and
outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{EE}}-\mathrm{GND}=0 \text { to }-6 \text { volts } \\
\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \text { to } 6 \text { volts } \\
\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \text { to } 6 \text { volts } \\
\text { and } \mathrm{V}_{\mathrm{EE}} \leq \mathrm{GND}
\end{gathered}
$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes $\left(\mathrm{D}_{\mathrm{x}}\right)$ are recommended as shown in Figure 22. These diodes should be able to absorb the maximum anticipated current surges during clipping.

Figure 20. Application Example

Figure 21. Application Example

Figure 22. External Germanium or Schottky Clipping Diodes

Figure 23. Function Diagram, LVX4051

QFN16, 2.5x3.5, 0.5P
CASE 485AW-01
DATE 11 DEC 2008
SCALE 2:1

\section*{ISSUE O}
 ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	2.50 BSC	
D2	0.85	1.15
E	3.50 BSC	
E2	1.85	2.15
e	0.50 BSC	
K	0.20	---
L	0.35	0.45
L1	---	0.15

GENERIC MARKING

DIAGRAM*

XXXX
ALYW

$\begin{array}{ll}\text { XXXX } & =\text { Specific Device Code } \\ \text { A } & =\text { Assembly Location } \\ \text { L } & =\text { Wafer Lot } \\ \text { Y } & =\text { Year } \\ \text { W } & =\text { Work Week } \\ \text { - } & \text { = Pb-Free Package }\end{array}$
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " * ", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON36347E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16, 2.5X3.5, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

