ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Negative Voltage SPDT Switch

The NLHV3157N is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. The device passes analog and digital negative voltages that may vary across the full power–supply range (from V_{EE} to GND).

Features

- Operating Voltage Range: $V_{EE} = -12 \text{ V to } -4 \text{ V}$
- Switch Signal Voltage Range: $V_{IS} = V_{EE}$ to GND
- Positive Control Signal Voltage: $V_{IN} = 0$ to 3.3 V
- Low ON Resistance: $R_{ON} \le 5 \Omega$ @ $V_{EE} = -10 V$
- Latch-up Performance Exceeds 200 mA
- Available in: SC88 6-Pin Package
- These Devices are Pb–Free, Halogen–Free/BFR-Free and are RoHS–Compliant

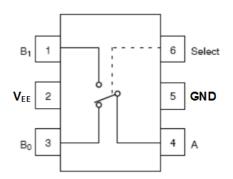
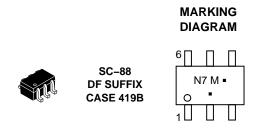



Figure 1. Pin Assignment and logic Diagram

ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

FUNCTION TABLE

Select Input	Function	
L	B0 Connected to A	
н	B1 Connected to A	

ORDERING INFORMATION

Device	Package	Shipping [†]
NLHV3157NDFT2G	SC88 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Ratin	lg	Value	Unit
V_{EE}	DC Supply Voltage		-13 to +0.5	V
V _{IS}	Analog Input Voltage (Note 1)		V _{EE} -0.5 to +0.5	V
V _{IN}	Digital Select Input Voltage (Note 1)		-0.5 to +3.6	V
I _{IOK}	Switch Input/Output diode current		±50	mA
I _{IK}	Select input diode current		-50	mA
PD	Power Dissipation in Still Air		60	mW
ΤL	Lead Temperature, 1 mm from Case for	10 seconds	260	°C
TJ	Junction Bias Under Bias		150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL94–V0 (0.125 in)	°C
۱ _L	Latch-up Current (Note1)	Below GND and above V_{EE} at 125°C	±200	mA
		Below GND and above V_{EE} at 25°C	±300	1
Ts	Storage Temperature		-65 to +150	°C
θ_{JA}	Thermal Resistance		400	°C/W
ESD	ESD Protection	Human Body Model	3000	V
		Machine Model	150	1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. The input and output voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Symbol	Parameter	Min	Max	Unit
V _{EE}	DC Supply Voltage	-12	-4	V
VS	Switch Input / Output Voltage (B0, B1, A)	V _{EE}	GND	V
V _{IN}	Digital Select Input Voltage	GND	3.3	V
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Transition Rise or Fall Time (Select Input)	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 2. Select input must be held HIGH or LOW, it must not float.

DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND; Typical characteristics are T_A at 25°C.)

				-	-55° to 125°	С	
Symbol	Parameter	Condition	V _{EE} , V	Min	Тур	Max	Unit
SELECT IN	PUT						
VIH	Minimum High–Level		< -10	2.0		3.3	V
	Input Voltage		−10 to < −8	1.8		3.3	1
			-8 to < -6	1.7		3.3	
			≥ -6	1.4		3.3	
V _{IL}	Maximum Low-Level		< -10	0		0.7	V
	Input Voltage		-10 to -6	0		0.7	<u>ا</u> ا
			−8 to < −6	0		0.7	
			≥ -6	0		0.5	
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 3.3 \text{ V or GND}$	-10		±0.2	±20	μΑ
POWER SU	JPPLY					•	
I _{CC}	Maximum Quiescent Supply Current	Select = 3.3 V or GND , V _{IS} = V _{EE} or GND	-10 to -4		25	50	μA
ANALOG S	WITCH					•	
R _{ON}	Maximum ON Resistance (Note 3)		-12		2.6	4.5	Ω
			-10		3.0	5	
			-8		3.5	5.8	
			-6		4.5	7.5	
		$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = V_{EE} \text{ to GND}$ $I_O \le 5 \text{ mA}$	-4		9	15	1
R _{FLAT}	ON Resistance Flatness (Notes 3, 4, 6)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = V_{EE} \text{ to GND}$ $I_O \le 10 \text{ mA}$	-12		0.4		Ω
I LAI			-10		1.2		
			-8		1.7		
			-6		2.5		
		$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = V_{EE} \text{ to GND}$ $I_O \le 5 \text{ mA}$	-4		6		
ΔR_{ON}	R _{ON} Mismatch	I _A = -10 mA, V _{Bn} = -8.4 V	-12		0.2		Ω
	Between (Notes 3, 4, 5)	$I_{A} = -10 \text{ mA}, V_{Bn} = -7 \text{ V}$	-10		0.2		
		I _A = -10 mA, V _{Bn} = -5.6 V	-8		0.25		
		$I_{A} = -10 \text{ mA}, V_{Bn} = -4.2 \text{ V}$	-6		0.25		
		$I_{A} = -5 \text{ mA}, V_{Bn} = -2.8 \text{ V}$	-4		0.3	1	
I _{NC(OFF)} , I _{NO(OFF)}	NC or NO OFF Leakage Current (Figure 9)	$V_{IN} = V_{IL} \text{ or } V_{IH}, V_{Bn} = GND,$ $V_A = V_{EE} \text{ to } GND$	-10		±1.0	±20	μΑ
ICOM(ON)	COM ON Leakage Current (Figure 9)		-10		±2.0	±20	μΑ

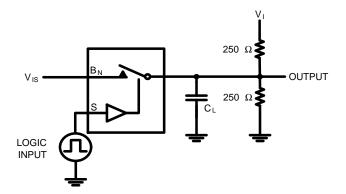
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower

of the voltages on the two (A or B Ports).

4. Parameter is characterized but not tested in production.

5. ΔR_{ON} = R_{ON}max - R_{ON}min measured at identical V_{EE}, temperature and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions.

				–55° to 125°C			
Symbol	Parameter	Condition	V _{EE} , V	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	Propagation Delay, Bus to Bus (Note 8) (A to B _n)	C _L = 100 pF (Figures 2, 3)	-12 to -4			2	ns
t _{PZL} , t _{PZH}	Switch Enable Time	C _L = 100 pF (Figures 2, 3)	-12			220	ns
	Turn–On Time (A to B _n)		-10			175	
	(A 10 D _n)		-8			165	
			-6			165	
			-4			200	
t _{PLZ} , t _{PHZ}	Switch Disable Time	C _L = 100 pF (Figures 2, 3)	-12			225	ns
		Γurn–Off Time A to B _n)	-10			155	
	(A to B _n)		-8			150	
			-6			120	
			-4			145	
t _B	Switch Break Time	Switch Break Time $ \begin{array}{l} R_{L} = 50 \ \Omega, \ C_{L} = 100 \ pF, \\ V_{IS} = -2.5 \ V \ (Figure 4) \end{array} $	-12	10		50	ns
			-10	10		60	
			-8	20		75	
			-6	20		90	
			-4	50		135	
t _{POR}	Power ON Reset Time	Measured from $V_{EE} = -4 V$	-12 to -4			20	μs
Q	Charge Injection	C _L = 1 nF, V _{GEN} = 0 V,	-12		170		pC
	(Note 7)	$R_{GEN} = 0 \Omega$ (Figure 5)	-10		120		
			-8		95		
			-6		55		1
			-4		40		
OIRR	Off–Isolation (Note 9)	$R_L = 50 \Omega$, f = 10 MHz (Figure 6)	-12 to -4	1	-33		dB
Xtalk	Crosstalk	$R_L = 50 \Omega$, f = 10 MHz (Figure 7)	-12 to -4		-42		dB
BW	–3 dB Bandwidth	$R_L = 50 \Omega$ (Figure 10)	-12 to -4		200		MH


AC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND; Typical characteristics are T_A at 25°C.)

Guaranteed by Design.
 This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the ON Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
 Off Isolation = 20 log10 [VA/VBn].

CAPACITANCES (Note 10)

Symbol	Parameter	Test Conditions	Typical @ 25°C	Unit
C _{IN}	Input Capacitance, Select Inputs	V _{EE} = -12 V	6	pF
C _{IOB}	B–Port OFF Capacitance	V _{EE} = -10 V	45	pF
C _{IOA_ON}	A Port Capacitance when Switch is Enabled	V _{EE} = -10 V	100	pF

 $10. T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested in production.

Note: Input V_{IS} driven by 50 Ω source terminated by 50 Ω . Note: C_L includes load and stray capacitance. Input PRR = 100 kHz, t_W = 5 μ s.

Parameter	VI	V _{IS}
t _{PLH} / t _{PHL}	Open	Source
t _{PZL} / t _{PLZ}	GND	V _{EE}
t _{PZH} / t _{PHZ}	2 x V _{EE}	GND

Figure 2. AC Test Circuit

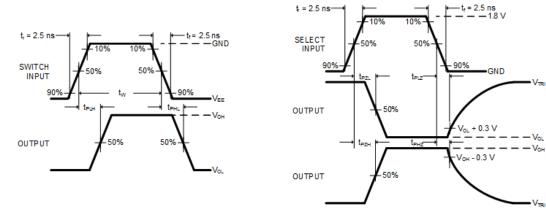


Figure 3. AC Test Waveforms

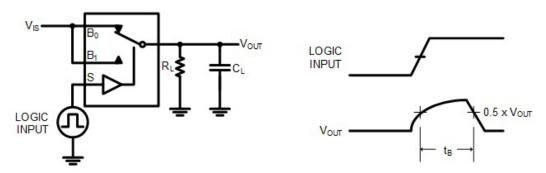
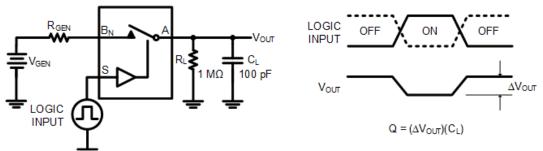
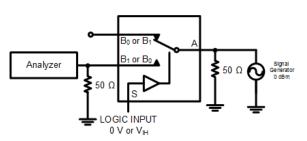




Figure 4. Switch Break Interval Timing

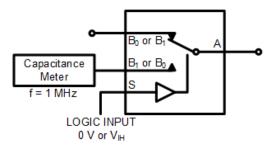
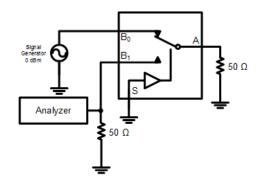
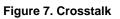




Figure 8. Channel Off Capacitance

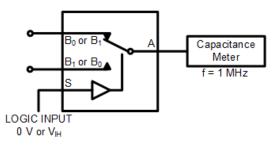


Figure 9. Channel On Capacitance

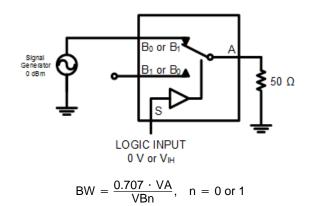
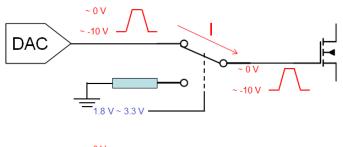



Figure 10. Bandwidth

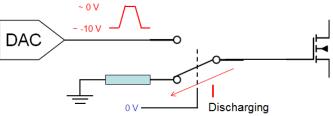
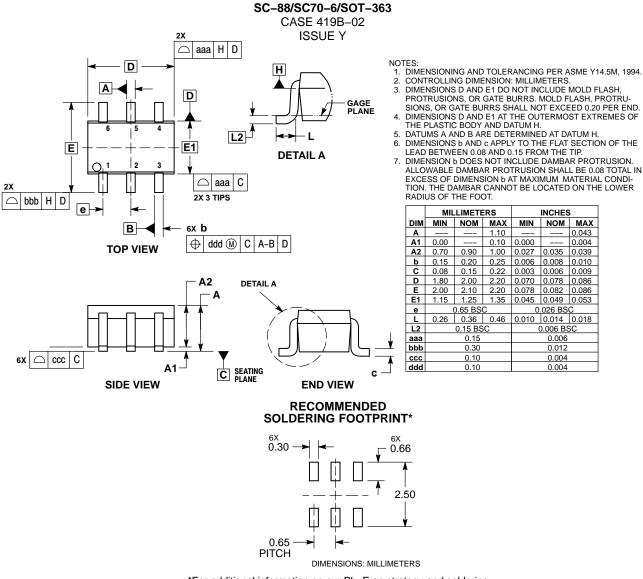



Figure 11. Typical Application

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and eventors and reasonable attornow for any other or ender the original term of parts patient of the original term of the speciation with event or insufficient or ender the original term of the speciation and the application in which was and proceenable attornow or used of any event or index of the original term or to distributors harmless against all claims, costs, damages, and avagences and proceenable a expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

INCHES MIN NOM MAX

0.027 0.035 0.039

0.026 BSC

0.010 0.014 0.018

0.006 BSC

0.006

0.012

0.004

0.004

0.043

0.004

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative