High-Speed USB 2.0 (480 Mbps) DPDT Switches

ON Semiconductor's NLAS7222B and NLAS7222C are part of a series of analog switch circuits that are produced using the company's advanced sub-micron CMOS technology, achieving industry-leading performance.

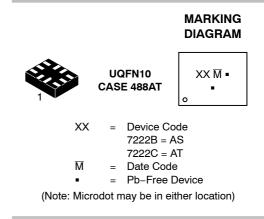
Both the NLAS7222B and NLAS7222C are 2- to 1-port analog switches. Their wide bandwidth and low bit-to-bit skew allow them to pass high-speed differential signals with good signal integrity. Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference. Their bandwidth is wide enough to pass High-Speed USB 2.0 differential signals (480 Mb/s).

Features

- R_{ON} is Typically 8.0 Ω at V_{CC} = 3.3 V
- Low Crosstalk: -30 dB @ 250 MHz
- Low Current Consumption: 1.0 µA
- Channel On–Capacitance: 8.0 pF (Typical)
- V_{CC} Operating Range: 1.65 V to 4.5 V
- > 700 MHz Bandwidth (or Data Frequency)
- These are Pb-Free Devices

Typical Applications

- Differential Signal Data Routing
- USB 2.0 Signal Routing


Important Information

- Continuous Current Rating Through Each Switch ±300 mA
- 8 kV I/O to GND ESD Protection

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

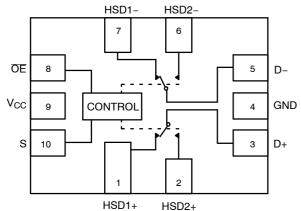


Figure 1. Pin Connections and Logic Diagram (NLAS7222B, Top View)

Table 1. PIN DESCRIPTION

Pin	Function
S	Select Input
ŌĒ	Output Enable
HSD1+, HSD1-, HSD2+, HSD2-, D+, D-	Data Ports

MAXIMUM RATINGS

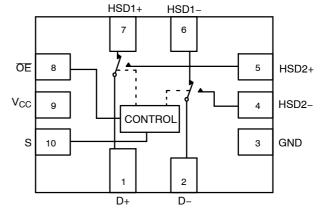


Figure 2. Pin Connections and Logic Diagram (NLAS7222C, Top View)

Table 2. TRUTH TABLE

ŌE	S	HSD1+, HSD1-	HSD2+, HSD2-	
1	X	OFF	OFF	
0	0	ON	OFF	
0	1	OFF	ON	

Symbol	Pins	Parameter	Value	Unit	
V _{CC}	V _{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V	
V _{IS}	HSD1+, HSD1- HSD2+, HSD2-	Analog Signal Voltage	-0.5 to V _{CC} + 0.3	V	
	D+, D-	1 F	-0.5 to +5.5	_	
V _{IN}	S, OE	Control Input Voltage, Output Enable Voltage	–0.5 to +5.5	V	
I _{CC}	V _{CC}	Positive DC Supply Current	50	mA	
T _S		Storage Temperature	–65 to +150	°C	
I _{IS_CON}	HSD1+, HSD1- HSD2+, HSD2-, D+, D-	Analog Signal Continuous Current-Closed Switch	±300	mA	
I _{IS_PK}	HSD1+, HSD1- HSD2+, HSD2-, D+, D-	SD2+, HSD2-,		mA	
I _{IN}	S, OE	Control Input Current, Output Enable Current	±20	mA	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
V _{CC}		Positive DC Supply Voltage	1.65	4.5	V
V _{IS}	HSD1+, HSD1- HSD2+, HSD2-	Analog Signal Voltage	GND	V _{CC}	V
	D+, D–		GND	4.5	
VIN	S, OE	Control Input Voltage, Output Enable Voltage	GND	V _{CC}	V
T _A		Operating Temperature Range	-40	+85	°C

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

ESD PROTECTION

Symbol	Parameter	Value	Unit
ESD	Human Body Model – All Pins	2.0	kV
ESD	Human Body Model – I/O to GND	8.0	kV

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT, OUTPUT ENABLE (Typical: T = 25°C, V_{CC} = 3.3 V)

					–40°C to +85°C		С	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
V _{IH}	S, OE	Control Input, Output Enable HIGH Voltage (See Figure 3)		2.7 3.3 4.2	1.3 1.4 1.6	_	-	V
VIL	S, OE	Control Input, Output Enable LOW Voltage (See Figure 3)		2.7 3.3 4.2	-		0.4 0.4 0.5	V
I _{IN}	S, OE	Control Input, Output Enable Leakage Current	$0 \le V_{IS} \le V_{CC}$	1.65 – 4.5	-	_	±1.0	μΑ

SUPPLY AND LEAKAGE CURRENT (Typical: T = 25°C, V_{CC} = 3.3 V)

					–40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
I _{CC}	V _{CC}	Quiescent Supply Current	$V_{IS} = V_{CC}$ or GND; $I_{OUT} = 0$ A	1.65 – 4.5	_	-	1.0	μΑ
I _{CCT}	V _{CC}	Increase in I _{CC} per Control Voltage	V _{IN} = 2.6 V	3.6	_	-	10	μΑ
I _{OZ}	HSD1+, HSD1- HSD2+, HSD2-	OFF State Leakage Current	$0 \leq V_{IS} \leq V_{CC}$	1.65 – 4.5	-	-	±1.0	μΑ
I _{OFF}	D+, D-	Power OFF Leakage Current	$0 \leq V_{IS} \leq 4.5 \ V$	0	-	-	±1.0	μΑ

HIGH SPEED ON RESISTANCE (Typical: T = 25° C, V_{CC} = 3.3 V)

					–40°C to +85°C		C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
R _{ON}		On-Resistance	V _{IS} = 0 V to 0.4 V, I _{ON} = 8 mA	2.7 3.3 4.2	-	9.0 8.0 7.0	12 10 8.0	Ω
R _{FLAT}		On-Resistance Flatness	V _{IS} = 0 V to 1.0 V, I _{ON} = 8 mA	2.7 3.3 4.2	-	1.6 1.5 1.4	-	Ω
ΔR_{ON}		On-Resistance Matching	V _{IS} = 0 V to 0.4 V, I _{ON} = 8 mA	2.7 3.3 4.2	-	1.05 0.85 0.65	-	Ω

DC ELECTRICAL CHARACTERISTICS (continued)

–40°C to +85°C Pins Min Max Symbol Parameter **Test Conditions** Тур Unit V_{CC} (V) V_{IS} = 0 V to V_{CC}, I_{ON} = 8 mA R_{ON} **On-Resistance** 2.7 9.0 12 Ω 10.5 3.3 8.5 7.5 8.5 4.2 R_{FLAT} $V_{IS} = 0 V$ to 1.0 V, $I_{ON} =$ 2.7 1.6 On-Resistance Ω Flatness 8 mA 3.3 1.5 4.2 1.4 ΔR_{ON} On-Resistance V_{IS} = 0 V to $V_{CC},\,I_{ON}$ = 2.7 2.20 Ω 8 mA Matching 3.3 2.45 4.2 2.65

FULL SPEED ON RESISTANCE (Typical: T = 25° C, V_{CC} = 3.3 V)

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

					–40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Мах	Unit
t _{ON}	Closed to Open	Turn-ON Time		1.65 – 4.5	_	14	30	ns
t _{OFF}	Open to Closed	Turn-OFF Time		1.65 – 4.5	-	10	20	ns
t _{BBM}		Break-Before-Make Delay		1.65 – 4.5	3.0	4.4	7.0	ns
BW		-3 dB Bandwidth	C _L = 5 pF	1.65 – 4.5	-	500	-	MHz
			C _L = 0 pF		_	750	_	

ISOLATION (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

					–40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Мах	Unit
O _{IRR}	Open	OFF-Isolation	f = 250 MHz	1.65 – 4.5	-	-22	-	dB
X _{TALK}	HSD1+ to HSD1-	Non-Adjacent Channel Crosstalk	f = 250 MHz	1.65 – 4.5	-	-30	-	dB

NLAS7222B CAPACITANCE (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

				–40°C to +85°C			
Symbol	Pins	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{IN}	S, OE	Control Pin Input Capacitance	$V_{CC} = 0 V$	-	3.0	-	pF
C _{ON}	D+ to HSD1+ or HSD2+	ON Capacitance	V _{CC} = 3.3 V; OE = 0 V S = 0 V or 3.3 V	-	8.0	-	pF
C _{OFF}	HSD1n or HSD2n	OFF Capacitance	$V_{CC} = V_{IS} = 3.3 \text{ V}; \overline{OE} = 0 \text{ V}$ S = 3.3 V or 0 V	-	4.5	-	pF

				–40°C to +85°C		C	
Symbol	Pins	Parameter	Test Conditions	Min	Тур	Мах	Unit
C _{IN}	S, OE	Control Pin, Output Enable In- put Capacitance	V _{CC} = 0 V	-	3.0	-	pF
C _{ON}	D+ to HSD1+ or HSD2+	ON Capacitance	V _{CC} = 3.3 V; OE = 0 V S = 0 V or 3.3 V	-	10	-	pF
C _{OFF}	HSD1n or HSD2n	OFF Capacitance		-	5.5	-	pF

NLAS7222C CAPACITANCE (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

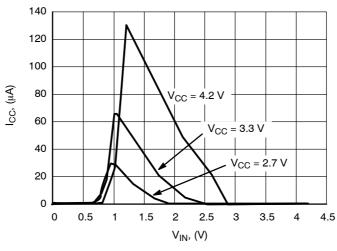
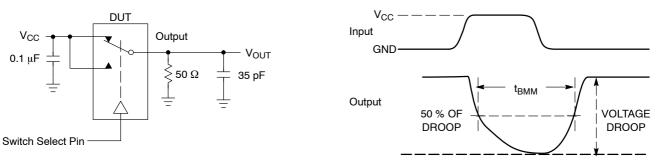
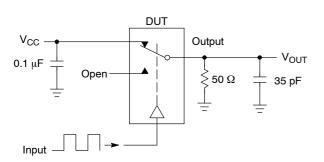
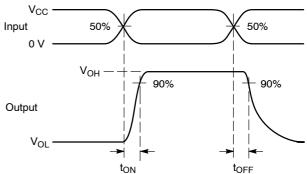
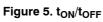
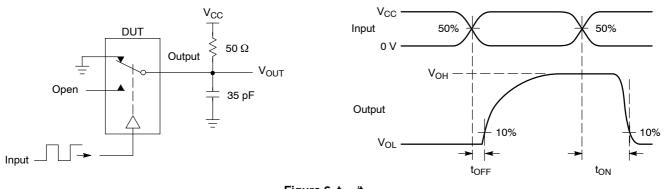
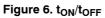
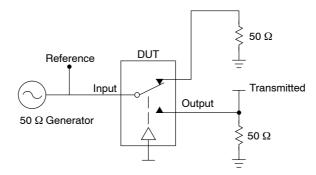


Figure 3. I_{CC} vs. V_{IN}


Figure 4. t_{BBM} (Time Break-Before-Make)



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} V_{ISO} &= \text{Off Channel Isolation} = 20 \text{ Log}\left(\frac{V_{OUT}}{V_{IN}}\right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \\ V_{ONL} &= \text{On Channel Loss} = 20 \text{ Log}\left(\frac{V_{OUT}}{V_{IN}}\right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \text{ to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

> Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

APPLICATIONS INFORMATION

The low on resistance and capacitance of the NLAS7222B provides for a high bandwidth analog switch suitable for applications such as USB data switching. Results for the USB 2.0 signal quality tests will be shown in this section, along with a description of the evaluation test board. The data for the eye diagram signal quality and jitter tests verifies that the NLAS7222B can be used as a data switch in low, full and high speed USB 2.0 systems.

Figures 8, 9 and 10 provide a description of the test evaluation board. The USB tests were conducted per the procedures provided by the USB Implementers Forum (www.usb.org), the industry group responsible for defining the USB certification requirements. The test patterns were generated by a PC and MATLAB software, and were inputted to the analog switch through USB connectors J1 (HSD1) or J2 (HSD2). A USB certified device was plugged into connector J4 to function as a data transceiver. The high speed and full speed tests used a flash memory device, while the low speed tests used a mouse. Test connectors J3 and J5 provide a direct connection of the USB device and were used to verify that the analog switch does not distort the data signals.

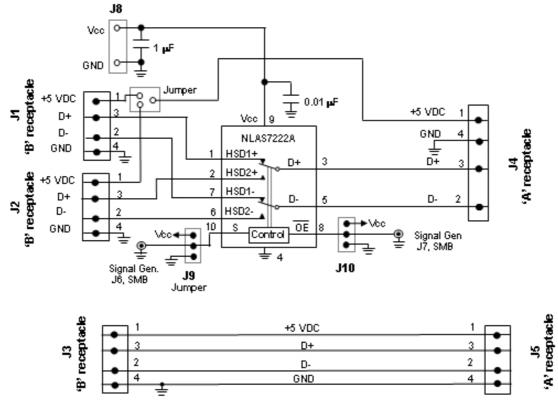


Figure 8. Schematic of the NLAS7222B USB Demo Board

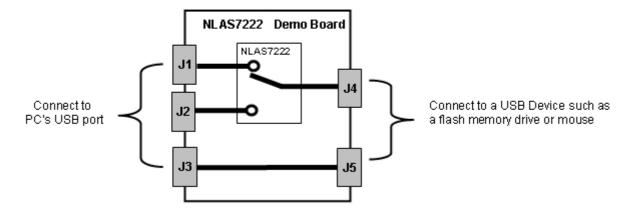
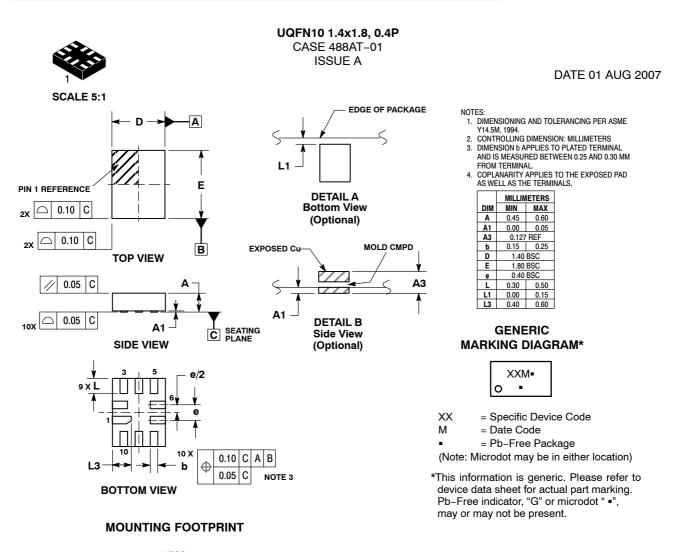
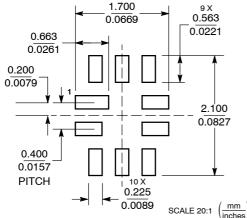


Figure 9. Block Diagram of the NLAS7222B USB Demo Board


Figure 10. Photograph of the NLAS7222B USB Demo Board


ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NLAS7222BMUTAG	AS	UQFN10 (Pb-Free)	3000 / Tape & Reel
NLAS7222BMUTBG	AS	UQFN10 (Pb-Free)	3000 / Tape & Reel
NLAS7222CMUTBG	AT	UQFN10 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98AON22493D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	10 PIN UQFN, 1.4 X 1.8, 0.4	(1.8, 0.4P			
ON Semiconductor and 💵 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclorating, or solication of use products for any particular purpose, not occes of series assume any maturing ansing on series of the application of use of any product or circuit, and specifically disclorations any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others, onsemi products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥