NLAS4051S

Analog Multiplexer/ Demultiplexer

TTL Compatible, Single-Pole, 8-Position Plus Common Off

The NLAS4051S is an improved version of the MC14051 and MC74HC4051 fabricated in sub-micron Silicon Gate CMOS technology for lower $\mathrm{R}_{\mathrm{DS}(\text { on })}$ resistance and improved linearity with low current. This device may be operated either with a single supply or dual supply up to $\pm 3.0 \mathrm{~V}$ to pass a $6.0 \mathrm{~V}_{\mathrm{PP}}$ signal without coupling capacitors.

When operating in single supply mode, it is only necessary to tie V_{EE}, pin 7 to ground. For dual supply operation, V_{EE} is tied to a negative voltage, not to exceed maximum ratings.

Features

- Improved $\mathrm{R}_{\mathrm{DS}(\text { on })}$ Specifications
- Pin for Pin Replacement for MAX4051 and MAX4051A
- One Half the Resistance Operating at 5.0 V
- Single or Dual Supply Operation
- Single 2.5-5.0 V Operation, or Dual ± 3.0 V Operation
- With V_{CC} of 3.0 to 3.3 V , Device Can Interface with 1.8 V Logic, No Translators Needed
- Address and Inhibit Logic are Over-Voltage Tolerant and May Be Driven Up +6.0 V Regardless of V_{CC}
- Improved Linearity Over Standard HC4051 Devices
- Space Saving TSSOP Package
- This is a $\mathrm{Pb}-$ Free Device

Figure 1. Pin Connection (Top View)

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

	MARKING DIAGRAM
$16 \times \operatorname{Non} 5$	16月HABA日
1	NLAS 4051
TSSOP-16	ALYW•
DT SUFFIX	\bigcirc
CASE 948F	

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- \quad Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NLAS4051SDTR2G	TSSOP-16 (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLAS4051S

TRUTH TABLE

Inhibit	Address			ON SWITCHES*
	C	B	A	
1	X don't care	X don't care	$\begin{gathered} \mathrm{X} \\ \text { don't care } \end{gathered}$	All switches open
0	0	0	0	$\mathrm{COM}-\mathrm{NO}_{0}$
0	0	0	1	COM- NO_{1}
0	0	1	0	$\mathrm{COM}-\mathrm{NO}_{2}$
0	0	1	1	$\mathrm{COM}-\mathrm{NO}_{3}$
0	1	0	0	$\mathrm{COM}-\mathrm{NO}_{4}$
0	1	0	1	$\mathrm{COM}-\mathrm{NO}_{5}$
0	1	1	0	$\mathrm{COM}-\mathrm{NO}_{6}$
0	1	1	1	$\mathrm{COM}-\mathrm{NO}_{7}$

*NO and COM pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

Figure 2. Logic Diagram

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Negative DC Supply Voltage (Referenced to GND)	V_{EE}	-7.0 to +0.5	V
$\begin{array}{lr}\text { Positive DC Supply Voltage (Note 1) } & \text { (Referenced to GND) } \\ \text { (Referenced to } \mathrm{V}_{\mathrm{EE}} \text {) }\end{array}$	V_{CC}	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+7.0 \end{aligned}$	V
Analog Input Voltage	$\mathrm{V}_{\text {IS }}$	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Digital Input Voltage (Referenced to GND)	$\mathrm{V}_{\text {IN }}$	-0.5 to 7.0	V
DC Current, Into or Out of Any Pin	I	± 50	mA
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature under Bias	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\theta_{J A}$	164	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation in Still Air	P_{D}	450	mW
Moisture Sensitivity	MSL	Level 1	
Flammability Rating Oxygen Index: 30\%-35\%	F_{R}	UL 94 V-0 @ 0.125 in	
ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\mathrm{V}_{\text {ESD }}$	$\begin{gathered} >2000 \\ >200 \\ >1000 \end{gathered}$	V
Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	ILATCHUP	± 300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The absolute value of $\mathrm{V}_{\mathrm{CC}} \pm\left|\mathrm{V}_{\mathrm{EE}}\right| \leq 7.0$.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min	Max	Unit
Negative DC Supply Voltage	(Referenced to GND)	V_{EE}	-5.5	GND	V
Positive DC Supply Voltage	(Referenced to GND) (Referenced to V_{EE})	V_{CC}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.6 \end{aligned}$	V
Analog Input Voltage		$\mathrm{V}_{\text {IS }}$	V_{EE}	V_{Cc}	V
Digital Input Voltage	(Note 6) (Referenced to GND)	$\mathrm{V}_{\text {IN }}$	0	5.5	V
Operating Temperature Range, All Package Types		T_{A}	-55	125	${ }^{\circ} \mathrm{C}$
Input Rise/Fall Time (Channel Select or Enable Inputs)	$\begin{aligned} & V_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 100 \\ 20 \end{gathered}$	ns/V

6. Unused digital inputs may not be left open. All digital inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition		$\underset{\mathbf{V C}}{\mathbf{v}_{\mathrm{CD}}}$	Guaranteed Limit			Unit
		Symbol		-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Address and Inhibit Inputs		V_{IH}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.75 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} 1.75 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 1.75 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
Maximum Low-Level Input Voltage, Address and Inhibit Inputs		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline .45 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline .45 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline .45 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
Maximum Input Leakage Current, Address or Inhibit Inputs	$\mathrm{V}_{\mathrm{IN}}=6.0$ or GND	1 IN	0 V to 6.0 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Maximum Quiescent Supply Current (per Package)	Address, Inhibit and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	$I_{\text {cc }}$	6.0	4.0	40	80	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Test Conditions	Symbol	$\mathbf{v}_{\mathbf{C c}}$	$\begin{aligned} & \mathbf{v}_{\mathrm{EE}} \\ & \mathbf{V} \end{aligned}$	Guaranteed Limit			Unit	
					-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
Maximum "ON" Resistance (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\left(\mathrm{V}_{\mathrm{EE}} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\ & \\| \mathrm{IS} \mid=10 \mathrm{~mA} \\ & \text { (Figures } 4 \text { thru 9) } \end{aligned}$	R_{ON}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ -3.0 \end{array}$	$\begin{aligned} & 86 \\ & 37 \\ & 26 \end{aligned}$	$\begin{gathered} 108 \\ 46 \\ 33 \end{gathered}$	$\begin{gathered} 120 \\ 55 \\ 37 \end{gathered}$	Ω	
Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} & \mathrm{V}_{I \mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{I S}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{I S}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}, \mathrm{~V}_{\mathrm{IS}=3}=3.0 \mathrm{~V}\right. \\ & \|I \mathrm{~S}\|=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IS}}=2.0 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ 0 \\ -3.0 \end{array}$	$\begin{aligned} & \hline 15 \\ & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	Ω	
ON Resistance Flatness	$\begin{array}{r} \left\|I_{\mathrm{S}}\right\|=10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{COM}}=1,2,3.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=2,0,2 \mathrm{~V} \end{array}$	$\mathrm{R}_{\text {flat(ON) }}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	3.0	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	Ω	
Maximum Off-Channel Leakage Current	Switch Off $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{I O}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{EE}}+1.0 \mathrm{~V} \end{aligned}$ (Figure 17)	$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$ ${ }^{\mathrm{I} N \mathrm{O}(\mathrm{OFF})}$	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$	nA	
Maximum On-Channel Leakage Current, Channel- to-Channel	$\begin{aligned} & \text { Switch } \mathrm{On}_{\mathrm{C}} \\ & \mathrm{~V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{C}}-1.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{EE}}+1.0 \mathrm{~V} \\ & \text { (Figure 17) } \end{aligned}$	$\mathrm{I}_{\text {Com(ON) }}$	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	5.0 5.0	$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$	nA	

7. At supply voltage (V_{CC}) approaching 2.5 V the analog switch on-resistance becomes extremely non-linear. Therefore, for low voltage operation it is recommended that these devices only be used to control digital signals.

NLAS4051S

AC CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Parameter	Test Conditions	Symbol	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	v_{EE}	Guaranteed Limit				Unit
					-55 to $25^{\circ} \mathrm{C}$		$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
					Min	Typ*			
Minimum Break-BeforeMake Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{VI}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 19) } \end{aligned}$	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \\ & 3.5 \end{aligned}$	-	-	ns

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS $\left(C_{L}=35 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Parameter	Symbol	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	$\stackrel{\mathrm{V}_{\mathrm{EE}}}{\mathrm{~V}}$	Guaranteed Limit							Unit
				-55 to $25^{\circ} \mathrm{C}$			$\leq 85^{\circ} \mathrm{C}$		$\leq 125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
Transition Time (Address Selection Time) (Figure 18)	${ }^{\text {t TRANS }}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$		22 20 16 16	$\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$		45 30 25 25		50 35 30 28	ns
Turn-on Time (Figures 14, 15, 20, and 21) Inhibit to N_{O} or N_{C}	t_{ON}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{array}$		22 18 16 16	$\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$		45 30 25 25		50 35 30 28	ns
Turn-off Time (Figures 14, 15, 20, and 21) Inhibit to N_{O} or N_{C}	toff	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$		22 18 16 16	40 28 23 23		45 30 25 25		50 35 30 28	ns
				Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$							
Maximum Input Capacitance, Select Inputs	$\mathrm{Cl}_{\text {IN }}$			8							pF
Analog I/O	C_{NO} or C_{NC}			10							
Common I/O	$\mathrm{C}_{\text {com }}$			10							
Feedthrough	$\mathrm{C}_{(\mathrm{ON})}$			1.0							

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

Parameter	Condition		$\underset{\mathbf{V C}}{\mathrm{v}_{\mathrm{cc}}}$	V_{VE}	Typ	Unit
		Symbol			$25^{\circ} \mathrm{C}$	
Maximum On-Channel Bandwidth or Minimum Frequency Response	$V_{I S}=1 / 2\left(V_{C C}-V_{E E}\right)$ Source Amplitude $=0 \mathrm{dBm}$ (Figures 10 and 22)	BW	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 80 \\ & 90 \\ & 95 \\ & 95 \end{aligned}$	MHz
Off-Channel Feedthrough Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Source }=0 \mathrm{dBm} \\ & \text { (Figures } 12 \text { and } 22 \text {) } \end{aligned}$	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \\ & -93 \end{aligned}$	dB
Maximum Feedthrough On Loss	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Source }=0 \mathrm{dBm} \end{aligned}$ (Figures 10 and 22)	$\mathrm{V}_{\text {ONL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Charge Injection	$V_{I N}=V_{C C}$ to $V_{E E,} f_{I S}=1 \mathrm{kHz}, t_{r}=t_{f}=3 \mathrm{~ns}$ $\mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{Q}=\mathrm{C}_{\mathrm{L}} * \Delta \mathrm{~V}_{\text {OUT }}$ (Figures 16 and 23)	Q	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 12 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{f}_{\text {IS }}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \mathrm{V}_{1 S}=6.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \text { (Figure 13) } \end{aligned}$	THD	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	\%

NLAS4051S

Figure 3. I_{Cc} versus Temp, $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}$ and 5 V

Figure 5. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Figure 7. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Figure 4. R_{ON} versus V_{CC}, Temp $=25^{\circ} \mathrm{C}$

Figure 6. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Figure 8. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

NLAS4051S

Figure 9. Typical On Resistance

$$
\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}
$$

Figure 10. Bandwidth, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$

Figure 11. Phase Shift, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$

Figure 13. Total Harmonic Distortion

Figure 14. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus V_{CC}

Figure 16. Charge Injection versus COM Voltage

Figure 15. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus Temp

Figure 17. Switch Leakage versus Temperature

Figure 18. Channel Selection Propagation Delay

NLAS4051S

Figure 19. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 20. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 21. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAS4051S

Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Figure 23. Charge Injection: (Q)

TYPICAL OPERATION

Figure 24. 5.0 Volts Single Supply

$$
\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0
$$

Figure 25. Dual Supply $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006
SCALE 2:1

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
Gor v	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^0]onsemi, OnSEMi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

