MC74LVX4052

Analog Multiplexer/ Demultiplexer
 High-Performance Silicon-Gate CMOS

The MC74LVX4052 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. This analog multiplexer/demultiplexer controls analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}).

The LVX4052 is similar in pinout to the high-speed HC4052A and the metal-gate MC14052B. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

The Channel-Select and Enable inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs.

This device has been designed so the ON resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ is more linear over input voltage than the R_{ON} of metal-gate CMOS analog switches and High-Speed CMOS analog switches.

Features

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Analog Power Supply Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=-3.0 \mathrm{~V}$ to +3.0 V
- Digital (Control) Power Supply Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.5$ to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal-Gate, HSL, or VHC Counterparts
- Low Noise
- Designed to Operate on a Single Supply with $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$, or Using Split Supplies up to $\pm 3.0 \mathrm{~V}$
- Break-Before-Make Circuitry
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAMS

CASE 948F

16	배H
	LVX
	4052
	ALYW.
	$\bigcirc \quad$.

$$
\begin{array}{ll}
\text { LVX4052 } & =\text { Specific Device Code } \\
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { Y } & =\text { Year } \\
\text { WW, W } & \text { = Work Week } \\
\text { G or : } & \text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Figure 1. Pin Connection and Marking Diagram (Top View)

FUNCTION TABLE

Control Inputs				
	Select			
Enable	B	A	ON Channels	
L	L	L	Yo	X0
L	L	H	Y1	X1
L	H	L	Y2	X2
L	H	H	Y3	X3
H	X	X	NONE	

X = Don't Care

NOTE: This device allows independent control of each switch.
Channel-Select Input A controls the X-Switch, Input B controls the Y-Switch.
Figure 2. Logic Diagram
Double-Pole, 4-Position Plus Common Off

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVX4052DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LVX4052DR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74LVX4052DTG	TSSOP-16*	96 Units / Rail
MC74LVX4052DTR2G	TSSOP-16*	2500 Tape \& Reel
MC74LVX4052MG	SOEIAJ-16 (Pb-Free)	50 Units / Rail
MC74LVX4052MELG	SOEIAJ-16 (Pb-Free)	2000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

MAXIMUM RATINGS

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A.
2. Tested to EIA/JESD22-A115-A.
3. Tested to JESD22-C101-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{EE}	Negative DC Supply Voltage	(Referenced to GND)	-6.0	GND	V
V_{CC}	Positive DC Supply Voltage	(Referenced to GND) (Referenced to V_{EE})	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage		$\mathrm{V}_{\text {EE }}$	$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	(Note 5) (Referenced to GND)	0	6.0	V
T_{A}	Operating Temperature Range, All Package Types		-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$	Input Rise/Fall Time (Channel Select or Enable Inputs)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns / V

5. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DEVICE JUNCTION TEMPERATURE VERSUS

 TIME TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs		$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.10 \\ & 3.15 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.10 \\ & 3.15 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 2.10 \\ & 3.15 \\ & 4.2 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Channel-Select or Enable Inputs		$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.6 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.6 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.6 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
I_{N}	Maximum Input Leakage Current, Channel-Select or Enable Inputs	$\mathrm{V}_{\mathrm{IN}}=6.0$ or GND	0 V to 6.0 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	Channel Select, Enable and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	4.0	40	80	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	\mathbf{v}_{EE}	Guaranteed Limit			Unit
					-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
RON	Maximum "ON" Resistance	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \|\mathrm{IS}\|=2.0 \mathrm{~mA} \\ & \text { (Figure 4) } \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 86 \\ & 37 \\ & 26 \end{aligned}$	$\begin{gathered} \hline 108 \\ 46 \\ 33 \end{gathered}$	$\begin{aligned} & 120 \\ & 55 \\ & 37 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \|\mathrm{IS}\|=2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 15 \\ & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	Ω
$\mathrm{l}_{\text {off }}$	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{1 \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \end{aligned}$ Switch Off (Figure 3)	$\begin{gathered} 5.5 \\ +3.0 \end{gathered}$	$\begin{gathered} \hline 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
	Maximum Off-Channel Leakage Current, Common Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \text { Switch Off (Figure 4) } \end{aligned}$	$\begin{gathered} 5.5 \\ +3.0 \end{gathered}$	$\begin{gathered} \hline 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	
$\mathrm{I}_{\text {on }}$	Maximum On-Channel Leakage Current, Channel-to-Channel	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ;$ Switch-to-Switch = V_{CC} or GND; (Figure 5)	$\begin{gathered} 5.5 \\ +3.0 \end{gathered}$	$\begin{gathered} \hline 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$

AC CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	V_{EE}	Guaranteed Limit				Unit
					-55 to $25^{\circ} \mathrm{C}$		$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
					Min	Typ*			
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or V_{IH}	3.0	0.0	1.0	6.5	-	-	ns
		$V_{\text {IS }}=V_{\text {V }}$	4.5	0.0	1.0	5.0	-	-	
		$R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ (Figures 12 and 13)	3.0	-3.0	1.0	3.5	-	-	

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

MC74LVX4052

AC CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Symbol	Parameter	V_{cc} V	v_{EE}	Guaranteed Limit							Unit
				-55 to $25^{\circ} \mathrm{C}$			$\leq 85^{\circ} \mathrm{C}$		$\leq 125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Channel-Select to Analog Output (Figures 16 and 17)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			$\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & 45 \\ & 30 \\ & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figures 14 and 15)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	0 0 0 -3.0			40 28 23 23		45 30 25 25		$\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZLL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figures 14 and 15)	2.5 3.0 4.5 3.0	0 0 0 -3.0			40 28 23 23		45 30 25 25		50 35 30 28	ns
	Power Dissipation Capacitance (Figure 18) (Note 6)				Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$						
$\mathrm{C}_{\text {PD }}$					45						pF
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance, Channel-Select or Enable Inputs										pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Maximum Capacitance (All Switches Off)		Analog I/O Common O/I Feedthrough		$\begin{aligned} & \hline 10 \\ & 10 \\ & 1.0 \end{aligned}$						pF

6. Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (GND $=0 \mathrm{~V}$)

Symbol	Parameter	Condition	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ \mathbf{V} \end{gathered}$	Typ	Unit
					$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response	$V_{I S}=1 / 2\left(V_{C C}-V_{E E}\right)$ Ref and Test Attn $=10 \mathrm{~dB}$ Source Amplitude $=0 \mathrm{~dB}$ (Figure 7)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	MHz
$\mathrm{V}_{\text {ISO }}$	Off-Channel Feedthrough Isolation	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ Adjust Network Analyzer output to 10 dBm on each output from the power splitter (Figures 8 and 9)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & -70 \\ & -70 \\ & -70 \\ & -70 \end{aligned}$	dB
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$V_{I S}=1 / 2\left(V_{C C}-V_{E E}\right)$ Adjust Network Analyzer output to 10 dBm on each output from the power splitter (Figure 11)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Q	Charge Injection	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}, \mathrm{f}_{\mathrm{IS}}=1 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ $R_{I S}=0 \Omega, C_{L}=1000 \mathrm{pF}, \mathrm{Q}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }}$ (Figure 10)	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 12 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{IS}}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \mathrm{V}_{\mathrm{IS}}=6.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \text { (Figure 19) } \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	\%

Figure 4. On Resistance, Test Set-Up

Figure 5. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

Figure 6. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

Figure 7. Maximum On Channel Bandwidth, Test Set-Up

Figure 8. Maximum Off Channel Feedthrough Isolation, Test Set-Up

Figure 9. Maximum Common-Channel Feedthrough Isolation, Test Set-Up

*Includes all probe and jig capacitance.

Figure 10. Charge Injection, Test Set-Up

Figure 11. Maximum On Channel Feedthrough On Loss, Test Set-Up

Figure 12. Break-Before-Make, Test Set-Up
Figure 13. Break-Before-Make Time

Figure 14. Propagation Delays, Channel Select to Analog Out

*Includes all probe and jig capacitance.

Figure 15. Propagation Delay, Test Set-Up Channel Select to Analog Out

Figure 16. Propagation Delays, Enable to Analog Out

Figure 17. Propagation Delay, Test Set-Up Enable to Analog Out

Figure 18. Power Dissipation Capacitance, Test Set-Up

Figure 19. Total Harmonic Distortion, Test Set-Up

APPLICATIONS INFORMATION

The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}=\text { logic high } \\
\mathrm{GND}=0 \mathrm{~V}=\text { logic low }
\end{gathered}
$$

The maximum analog voltage swing is determined by the supply voltages V_{CC} and V_{EE}. The positive peak analog voltage should not exceed V_{CC}. Similarly, the negative peak analog voltage should not go below V_{EE}. In this example, the difference between V_{CC} and V_{EE} is 5.0 volts. Therefore, using the configuration of Figure 21, a maximum analog signal of 5.0 volts peak-to-peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and

Figure 20. Application Example
outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{EE}}-\mathrm{GND}=0 \text { to }-6 \text { volts } \\
\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \text { to } 6 \text { volts } \\
\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \text { to } 6 \text { volts } \\
\text { and } \mathrm{V}_{\mathrm{EE}} \leq \mathrm{GND}
\end{gathered}
$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes $\left(D_{x}\right)$ are recommended as shown in Figure 22. These diodes should be able to absorb the maximum anticipated current surges during clipping.

Figure 21. Application Example

Figure 22. External Germanium or Schottky Clipping Diodes

Figure 23. Function Diagram, LVX4052

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD DIMENSIONS A
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES			
	MIN		MAX	MIN		
M MAX						
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F-01
ISSUE B

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

SOEIAJ-16
CASE 966-01
ISSUE A

DETAIL P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE $0.08(0.003)$ DAMBAR PROTRUSION SHALL BE 0.08 (0.
TOTAL IN EXCESS OF THE LEAD WIDTH
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER DAMBAR CANNOT BE LOCATED ON THE
RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	--	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

ON Semiconductor and (ill are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

