3.3 V / 5 V ECL Differential **Receiver/Driver with High Gain and Enable Output**

Description

The EP16VC is a differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices but with high gain and enable output.

The EP16VC provides an \overline{EN} input which is synchronized with the data input (D) signal in a way that provides glitchless gating of the QHG and QHG outputs.

When the \overline{EN} signal is LOW, the input is passed to the outputs and the data output equals the data input. When the data input is HIGH and $\overline{\text{EN}}$ goes HIGH, it will force the Q_{HG} LOW and the $\overline{\text{Q}_{\text{HG}}}$ HIGH on the next negative transition of the data input. If the data input is LOW when the EN goes HIGH, the next data transition to a HIGH is ignored and Q_{HG} remains LOW and $\overline{Q_{HG}}$ remains HIGH. The next positive transition of the data input is not passed on to the data outputs under these conditions. The Q_{HG} and $\overline{Q_{HG}}$ outputs remain in their disabled state as long as the \overline{EN} input is held HIGH. The \overline{EN} input has no influence on the \overline{Q} output and the data input is passed on (inverted) to this output whether \overline{EN} is HIGH or LOW. This configuration is ideal for crystal oscillator applications where the oscillator can be free running and gated on and off synchronously without adding extra counts to the output.

The V_{BB}/\overline{D} pin is internally dedicated and available for differential interconnect. V_{BB}/\overline{D} may rebias AC coupled inputs. When used, decouple V_{BB}/\overline{D} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 1.5 mA. When not used, V_{BB}/\overline{D} should be left open.

The 100 Series contains temperature compensation.

Features

- 310 ps Typical Prop Delay \overline{Q} , 380 ps Typical Prop Delay QHG, QHG
- Gain > 200
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range:
 - $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
- $V_{CC} = 0$ V with $V_{EE} = -3.0$ V to -5.5 V
- Open Input Default State
- Q_{HG} Output Will Default LOW with D Inputs Open or at V_{EE}
- V_{BB} Output
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

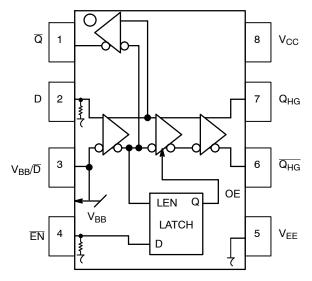
CASE 506AA

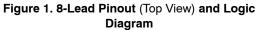
MARKING DIAGRAMS* 8 8 8 8 8 8 8 8 8 8 KEP66 KP66 ALYW ALYW. = Assembly Location A = Wafer Lot 1 = Year Y w = Work Week Μ = Date Code = Pb-Free Package

948R-02

CASE

751-07


(Note: Microdot may be in either location)


*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EP16VCDG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC100EP16VCDR2G	SOIC-8 NB (Pb-Free)	2500/Tape & Reel
MC100EP16VCDTG	TSSOP-8 (Pb-Free)	100 Units/Tube
MC100EP16VCDTR2G	TSSOP-8 (Pb-Free)	2500/Tape & Reel
MC100EP16VCMNR4G	DFN-8 (Pb-Free)	1000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Table 1. PIN DESCRIPTION

Pin	Function
D*	ECL Data Input
Q	ECL Data Output
$Q_{HG}, \overline{Q}_{HG}$	ECL High Gain Data Outputs
EN*	ECL Enable Input
V _{BB} /D	Reference Voltage Output / ECL Data Input
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP	(DFN–8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Elec- trically connect to the most negative supply (GND) or leave unconnected, floating open.

*Pins will default LOW when left open.

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC–8 NB TSSOP–8 DFN–8	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	167 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 _6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			± 1.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8	129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C
θJC	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. 100EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1))

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	27	37	47	32	42	52	34	44	54	mA
V _{OH}	Output HIGH Voltage (Note 2)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 2)	1305	1400	1555	1305	1400	1555	1305	1400	1555	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
VIL	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV
V _{BB}	Output Voltage Reference	1775	1890	2045	1775	1890	2045	1775	1890	2045	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current D	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V. 2. All loading with 50 Ω to V_{CC} - 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C 25°C				85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	27	37	47	32	42	52	34	44	54	mA
V _{OH}	Output HIGH Voltage (Note 2)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 2)	3005	3100	3255	3005	3100	3255	3005	3100	3255	mV
VIH	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3055		3375	3055		3375	3055		3375	mV
V_{BB}	Output Voltage Reference	3475	3490	3705	3475	3490	3705	3475	3490	3705	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current D	0.5			0.5			0.5			μA

Table 5. 100EP DC CHARACTERISTICS. PECL (V_{CC} = 5.0 V. V_{FF} = 0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to –0.5 V.

2. All loading with 50 Ω to V_{CC} – 2.0 V.

Table 6. 100EP DC CHARACTERISTICS, NECL (V_{CC} = 0 V; V_{FF} = -5.5 V to -3.0 V (Note 1))

		–40°C 25°C									
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	27	37	47	32	42	52	34	44	54	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 2)	-1995	-1900	-1745	-1995	-1900	-1745	-1995	-1900	-1745	mV
VIH	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
VIL	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V _{EE} ·	+ 2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}.

All loading with 50 Ω to V_{CC} – 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{3.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C 25°C					85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)		> 3			> 3			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay (Differential) Q (Differential) QHG, QHG (Single-Ended) Q (Single-Ended) QHG, QHG	200 250 250 300	280 360 330 410	350 450 400 500	250 300 300 350	310 380 360 430	400 500 450 550	275 325 325 375	340 430 390 480	425 525 475 575	ps
t _S	Setup Time EN = L to D EN =H to D	50 100	15 60		50 100	5 40		50 100	18 10		ps
t _H	Hold Time <u>EN</u> = L to D <u>EN</u> =H to D	100 50	50 15		100 50	40 20		100 50	5 20		ps
t _{SKEW}	Duty Cycle Skew (Note 2)		5.0	20		5.0	20		5.0	20	ps
t _{JITTER}	RMS Random Clock Jitter (Figure 2)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Input Voltage Swing HG (Differential Configuration) Q	25 150	800 800	1200 1200	25 150	800 800	1200 1200	25 150	800 800	1200 1200	mV
t _r t _f	Output Rise/Fall Times Q (20% - 80%) QHG, QHG	200 70	300 130	400 220	250 80	350 150	450 240	250 100	350 170	500 270	ps

Table 7. AC CHARACTERISTICS ($V_{CC} = 0 \text{ V}; \text{ V}_{EE} = -3.0 \text{ V} \text{ to } -5.5 \text{ V} \text{ or}$	V _{CC} = 3.0 V to 5.5 V; V _{EE} = 0 V (Note 1))
-------------------------------	---	---

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. 2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

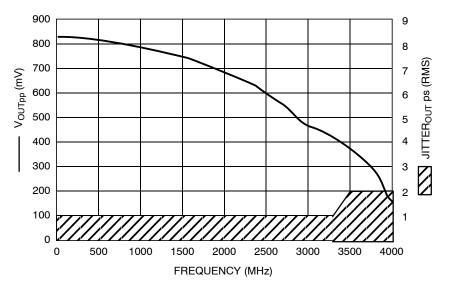


Figure 2. F_{max}/Jitter for QHG, QHG Output

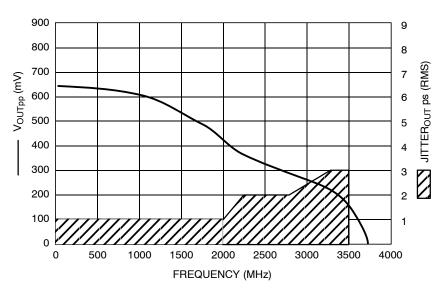


Figure 3. F_{max} /Jitter for \overline{Q} Output

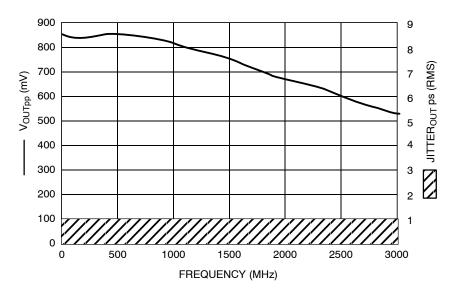


Figure 4. F_{max}/Jitter for QHG, QHG Output

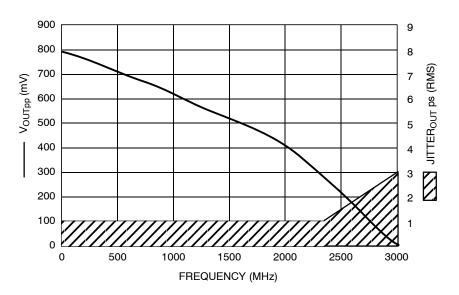
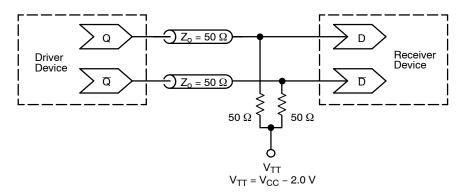
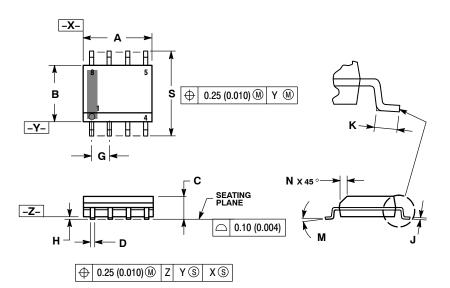



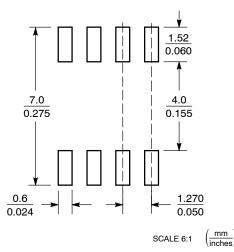
Figure 5. F_{max} /Jitter for \overline{Q} Output



Resource Reference of Application Notes

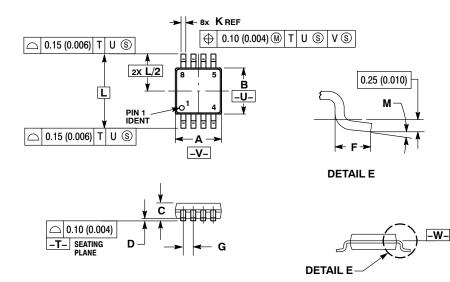
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 To 11 THRU 751-06 ARE OBSOLETE. NEW
- 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

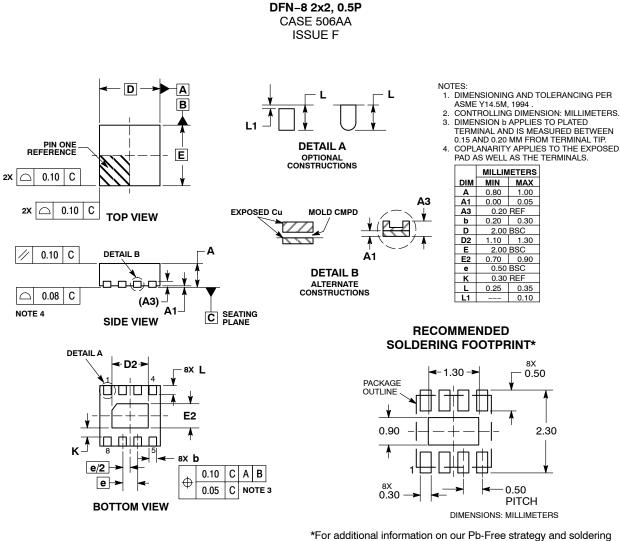
	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
в	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
к	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 CASE 948R-02 **ISSUE A**



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD

 - 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
C	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65	BSC	0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90	BSC	0.193	BSC
Μ	0 °	6 °	0°	6 °

PACKAGE DIMENSIONS

For additional information on our PD-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, "ripcical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative