FUSB303B Autonomous USB Type-C™ Port Controller with I²C and GPIO Control

FUSB303B

Description

The FUSB303B device is a fully autonomous USB Type- $C^{™}$ controller optimized for 15 W or less applications. The FUSB303B offers CC logic detection for Source Port role, Sink Port role, DRP, and accessory detection support, as well as Dead Battery support as defined in USB-C specifications. The FUSB303B features configurable address I^2C access to support multiple ports per system or it can operate autonomously configured by just pins. The FUSB303B features ultra-low power during operation, and an ultra-thin, 12-Lead QFN package.

Features

- Fully Autonomous USB-C[™] Port Controller
- Supports Latest Type-C[™] Specification Release 1.3
- Source, Sink, and DRP Port role Configuration with Optional Accessory Support
- Try.SRC and Try.SNK modes for Preferring Source Role or Sink Role Respectively
- V_{DD} Operating Range, 2.85–5.5 V
- Typical Low Power Operation: $I_{CC} < 10 \mu A$
- GPIO and I²C Configuration
- Max 28 V DC Tolerance on ID, VBUS DET, CC1 and CC2
- Dead Battery Support (Sink Port role when No Power Applied)
- 4 kV HBM ESD Protection for Connector Pins
- Small Packaging, 12 Lead QFN (1.6 mm × 1.6 mm × 0.375 mm)

Applications

- Smartphones
- Tablets
- Laptops
- Accessoires
- Industrial
- Power Banks

ON Semiconductor®

www.onsemi.com

QFN12 CASE 722AG

MARKING DIAGRAM

UNKK _XYZ

UN = FUSB303B Device Code

KK = Lot Trace Code

_ = Pin #1 Identifier XY = Two Digit Date Code Z = Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 17 of this data sheet.

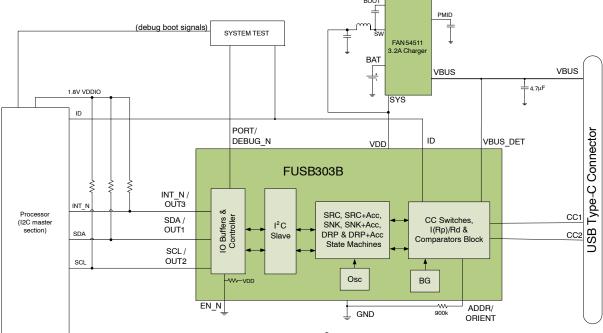
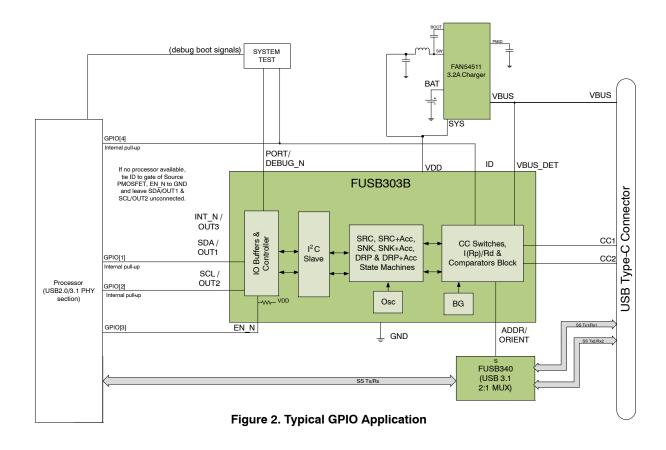



Figure 1. Typical I²C Application

BLOCK DIAGRAM

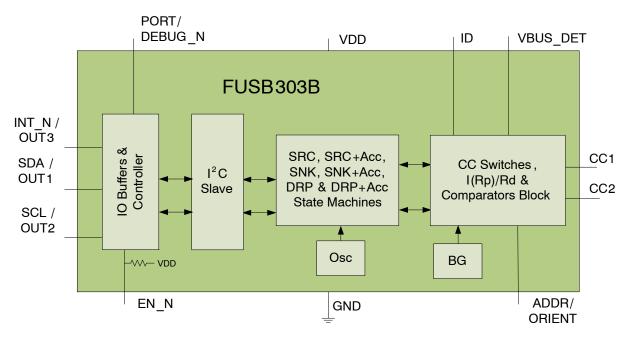


Figure 3. FUSB303B Block Diagram

PIN CONFIGURATION

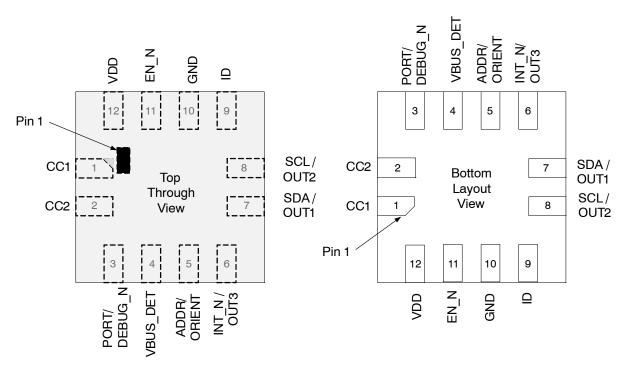


Figure 4. FUSB303B Pin Assignment (Top Through and Bottom Views)

PIN DESCRIPTIONS

Table 1. PIN	DESCRIPTION	IS				
Pin#	Name	Type			Descripti	on
USB TYPE-C	CONNECTOR IN	TERFACE				
1, 2	CC1, CC2	I/O	Type-C Cor	figuration Channe	l pins used for U	SB-C receptacles
4	VBUS_DET	Input	VBUS input	pin for attach and	detach detection	1
POWER AND	GROUND					
10	GND	Ground	Ground			
12	VDD	Power	Input Supply Voltage			
I ² C SIGNAL IN	TERFACE		•			
6	INT_N/OUT3	Open-Drain Output	the active LO I ² C register When the de drain output LOW = Audi	DW open drain into bits. evice is in GPIO m	errupt output use ode (see ADDR/ cted	C mode (see ADDR/ORIENT pin), it is ad to prompt the processor to read the ORIENT pin), this pin is OUT3, an open
7	SDA/OUT1	Open Drain I/O	ORIENT pin signal of the When the de OUT2 inputs ID pin HIGH-Z), SDA/OUT1 is the I ² C interface, evice is in GPIO mes (I) or outputs (O) OUT1 (I/O) HIGH-Z (O)	e SDA data sign ode (see ADDR/ are shown below OUT2 (I/O) LOW (O)	Functionality No Device Attached
8	SCL/OUT2	Open Drain I/O	HIGH-Z HIGH-Z HIGH-Z LOW LOW LOW	HIGH-Z (O) LOW (O) LOW (O) HIGH (I) LOW (I) HIGH (I)	HIGH-Z (O) HIGH-Z (O) LOW (O) HIGH (I) HIGH (I) LOW (I) LOW (I)	Sink with Default Current Sink with 1.5 A Current Sink with 3 A Current Source with Default Current Source with 1.5 A Current Source with 3 A Current Reserved (Do Not Use)
GPIO PIN INTE	RFACE					

3	PORT/ DEBUG_N	Input then Push/Pull Output	PORT/DEBUG_N is a dual function pin: 3 state input to set the port role. On the falling edge of EN_N and when VDD is active or during power up when EN_N is LOW, the state of this pin is sampled. This pin is also sampled on a SW_RES soft reset via I^2C . HIGH = FUSB303B as a Source Only port Float = FUSB303B as a Dual Role Port (DRP) LOW = FUSB303B as a Sink Only port Note: a 900 k Ω resistor should be used when connecting to VDD or GND to reduce standby current. Subsequently, this pin is the DEBUG_N push-pull output LOW = Debug Accessory detected HIGH = Debug Accessory not detected
5	ADDR/ ORIENT	Input then Push/Pull Output	ADDR/ORIENT is a dual function pin: 3 state input to set to I^2C mode and the I^2C address or for GPIO mode. On the falling edge of EN_N and when VDD is active or during power up when EN_N is LOW, the state of this pin is sampled. This pin is also sampled on a SW_RES soft reset via I^2C . HIGH = I^2C mode with address 62h Float = GPIO mode LOW = I^2C mode with address 42h Note: a 900 k Ω resistor should be used when connecting to VDD or GND to reduce standby current. Subsequently, this pin is the ORIENT push–pull output LOW = I^2C or A5 of the USB– I^2C receptacle HIGH = I^2C mode and the I^2C mode and the I^2C mode and the I^2C mode with address 62h Float = I^2C mode with address 62h Float = I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 42h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with address 62h Note: a 900 k I^2C mode with a
9	ID	Open-Drain Output	Open drain output that indicate FUSB303B's detection state as a Source or Sink LOW = FUSB303B attached as a Source HIGH-Z = FUSB303B attached as a Sink
11	EN_N	Input	Active LOW device enable input (has internal pull up resistor)

Table 2. ORIENT PIN VERSUS ORIENT [1:0] REGISTER BITS MAPPING

CC1 (A5)	CC2 (B5)	STATUS. ORIENT[1] Bit	STATUS. ORIENT[0] Bit	ADDR/ORIENT pin Output
FUSB303B CONNECTED	AS A SINK			•
SNK. Open	SNK. Open	0	0	LOW
SNK. Open	SNK. Rp	1	0	HIGH
SNK. Rp	SNK. Open	0	1	LOW
SNK. Rp (Note 2)	SNK. Rp	0	1	LOW
SNK. Rp	SNK. Rp (Note 2)	1	0	HIGH
FUSB303B CONNECTED	AS SOURCE			•
SRC. Open	SRC. Open	0	0	LOW
SRC. Open or SRC. Ra	SRC. Rd	1	0	HIGH
SRC. Rd	SRC. Open or SRC. Ra	0	1	LOW
SRC. Rd (Note 1)	SRC.Rd	0	1	LOW
SRC. Rd	SRC. Rd (Note 1)	1	0	HIGH

- 1. Orientation decoded on this pin after a Sink Debug Test System (DTS) attached to FUSB303B.
- 2. Orientation decoded on this pin after a Source Debug Test System (DTS) attached to FUSB303B.

High Voltage Tolerance on CCx and VBUS Pins

The FUSB303B has additional protection for the type C connector pins where it can tolerate up to 28 V on VBUS, CC1 and CC2 to protect against any misbehaving Type C device connect to the FUSB303B. If VBUS tolerance is needed higher than 28 V, a 900 k Ω resistor can be used externally along with a Transient Voltage Suppressor (TVS) to achieve almost any higher voltage tolerance dictated by the TVS chosen.

Dead Battery

If power is not applied to FUSB303B and it is attached to a Source device, then the Source would pull up the CC line connected through the cable. The FUSB303B in response will turn on the pull-down that will bring the CC voltage to a range that the Source can detect an attached device and turn on VBUS.

GPIO Mode, Debug and Audio Accessories

When VDD is active and on the trailing edge of EN_N, the FUSB303B will sample PORT/DEBUG_N to determine if the FUSB303B operates as a Source (HIGH), Sink (LOW) or DRP (floating). Subsequently the PORT/DEBUG_N will be set LOW when a Debug Test System is detected.

If the FUSB303B is configured as a Sink (PORT/DEBUG_N = LOW upon enable), the FUSB303B will detect a Debug Test System if Rp is detected on both CC1 and CC2. Devices that support orientation detection will also have ADDR/ORIENT set based on the levels detected for CC1 and CC2. ID will be set HIGH–Z.

If the device is configured as a Source (PORT/DEBUG_N = HIGH upon enable), the FUSB303B will detect a Debug Test System if Rd is detected on both CC1 and CC2. Devices that support orientation detection

will also have ADDR/ORIENT set based on the levels detected for CC1 and CC2. ID will be set LOW.

The FUSB303B also supports DRP toggling for detecting debug test systems. When PORT/DEBUG_N= float upon enable, the FUSB303B can detect both Source and Sink debug test systems depending on how it resolves its role as a Source or Sink. Then it acts either as a Source or Sink as described above.

The FUSB303B will report Debug Test System detection via the Type I²C register as well. The detection is the same as described above except Source, Sink and DRP roles are configured via the Portrole register. This Portrole register setting has higher priority over the PORT/DEBUG_N pin state for Source/Sink/DRP port role.

The FUSB303B will set INT_N/OUT3 = LOW in GPIO mode when an Audio Accessory is detected. The FUSB303B will report Audio Accessory detection via the Type I²C register as well when Audio Accessory detection is configured via the Portrole register.

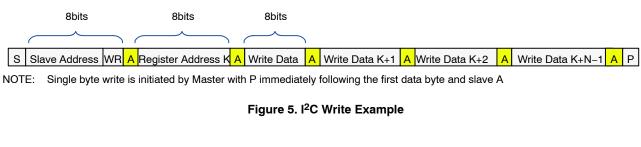
FORCE.SNK and FORCE.SRC Functionality

In some cases, a device may need to force its role to a Sink or a Source especially if two DRP devices are connected together and they have connected in the wrong device role. In that case, the FUSB303B has incorporated a function that allows it to be forced into either Sink or Source. However, if it cannot complete this role change, the FUSB303B will resume its previous role and flag success or failure with I_FRC_SUCC and I_FRC_FAIL interrupts respectively.

Remedial Actions

In some cases, a device may start to detect a Source or Sink but get caught in a loop trying to resolve the detected device. In that case the FUSB303B provides functionality to resolve

to a stable attached state. This functionality can be turned on and off via the REMEDY_EN and DCABLE_EN bits. Multiple cases are tried and some of the register settings will be changed to try to achieve stable attach. The I_REMEDY interrupt will allow the processor to know that this functionality has been triggered.


AUTOSNK Mode

When the FUSB303B is powered directly from VBAT the AUTO_SNK_EN mode can be used to prevent the application from attaching as a Source when the battery is weak or disconnect and attach as a Sink. With AUTO_SNK_EN enabled the port will attempt to configure

as a Sink when attached to another DRP. If connected to another Sink, the port will detach. The threshold at which AUTOSNK can be triggered can be programmed via the AUTO_SNK_TH bits. The I_AUTOSNK interrupt is triggered whenever this functionality is invoked.

Power Up, Initialization and Reset, Interrupt Operation, I^2C Interface

The FUSB303B includes a full I²C slave controller. The I²C slave fully complies with the I²C specification version 6 requirements. This block is designed for fast mode. Examples of an I²C write and read sequence are shown Figure 5 and Figure 6 respectively.

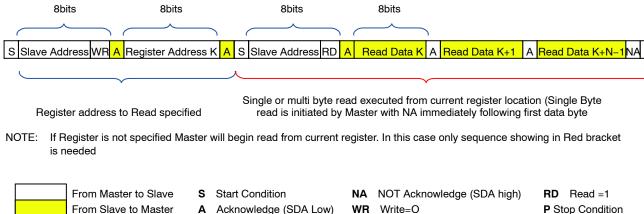


Figure 6. I²C Write Example

When power is first applied, the FUSB303B will power up in the configuration set by the PORT/DEBUG_N input with Audio Accessory Support enabled and all interrupts masked. If the ADDR/ORIENT input is HIGH or LOW (I²C mode) the local processor can then re-configure the FUSB303B to the desired mode and clear the global interrupt mask bit, INT_MASK using the I²C interface. The INT_N/OUT3 pin is an active LOW, open drain output. This pin indicates to the host processor that an interrupt has occurred in the FUSB303B which needs attention. The INT_N/OUT3 pin is in a high impedance state by default after power-up or device reset, and the global interrupt mask (INT_MASK in Control register) is set. After INT_MASK bit is cleared by the local processor, the INT_N/OUT3 pin stays high impedance in preparation of future interrupts.

When an interruptible event occurs, INT_N/OUT3 is driven LOW and is in a high impedance state again when the processor clears the interrupt by writing a one in the position of the interrupt bit that was set. Subsequent to the initial power up or reset; if the processor writes a "1" to global interrupt mask bit when the system is already powered up, the INT_N/OUT3 pin stays in a high impedance state and ignores all interrupts until the global interrupt mask bit is cleared. If an event happens that would ordinarily cause an interrupt when the global interrupt mask bit is set, the INT_N/OUT3 pin goes LOW when the global interrupt mask is cleared.

Interrupt bits hold their value and to clear a specific interrupt, a "1" needs to be written to that interrupt bit.

I²C Address

The ADDR/ORIENT bit HIGH or LOW is indicated in bit 5 of the slave address shown in Table 3.

Table 3. FUSB303B I²C SLAVE ADDRESS

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	ADDR/ORIENT state	0	0	0	1	R/W

Table 4. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Min.	Max.	Unit
V_{VDD}	Supply Voltage from V _{DD}			-0.5	6.0	V
V _{CON}	ID, VBUS_DET, CC1 and CC2 voltage			-0.5	28.0	V
V _{IO}	PORT/DEBUG_N, ADDR/ORIENT, INT_N/OUT3, SDA/C	OUT1, SCL/OUT2 p	ins voltage	-0.5	6.0	V
V _{IO}	EN_N			-0.5	2.0	V
T _{STORAGE}	Storage Temperature Range			-65	+150	С
T_J	Maximum Junction Temperature				+150	С
TL	Lead Temperature (Soldering, 10 seconds)				+260	С
ESD	IEC 61000-4-2 System ESD with external TVS	Connector	Air Gap	15		kV
		Pins (VBUS, CC1 & CC2)	Contact	8		
	Human Body Model, JEDEC JESD22-A114	Connector Pins (VBUS_DET, Co	C1 and CC2)	4		kV
		Others		2		
	Charged Device Model, JEDEC LESD22-C101	All Pins		1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{BUS}	VBUS_DET Voltage	4.0	5.0	22	V
V_{DD}	Supply Voltage	2.85	3.3	5.5	V
T _A	Operating Temperature	-40		+85	С

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. DC AND TRANSIENT CHARACTERISTICS

(Unless otherwise specified: Recommended T_A and T_J temperature ranges. All typical values are at T_A = 25°C and V_{DD} = 3.3 V unless otherwise specified.)

			-40 to +89		
Symbol	Parameter	Min.	Тур.	Max	Unit
TYPE C SPECIFI	C PARAMETERS				
I _{80_CCX}	Source 80 μA CC Current (Default) HOST_CUR1 = 0, HOST_CUR0 = 1 or via GPIO mode	64	80	96	μΑ
I _{180_CCX}	Source 180 μA CC Current (1.5 A) HOST_CUR1 = 1, HOST_CUR0 = 0 or via GPIO mode	166	180	194	μΑ
I _{330_CCX}	Source 330 μA CC Current (3 A) HOST_CUR1 = 1, HOST_CUR0 = 1 or via GPIO mode (Note 3)	304	330	356	μΑ
V _{SNKDB}	Sink Pull-Down Voltage in Dead Battery Under all Pull-up Source Loads			2.18	V
Rd	Sink Pull-Down Resistance when VDD is within Operating Range	4.6	5.1	5.6	kΩ
zOPEN	CC Resistance for Disabled State	126			kΩ
vRa-SRCdef	Ra Detection Threshold for CC Pin for Source for Default Current on VBUS (HOST_CUR1/0 = 01) or via GPIO mode	0.15	0.20	0.25	V
vRa-SRC1.5A	Ra Detection Threshold for CC Pin for Source for 1.5 A Current on VBUS (HOST_CUR1/0 = 10) or via GPIO mode	0.35	0.40	0.45	V
vRa-SRC3A	Ra Detection Threshold for CC Pin for Source for 3 A Current on VBUS (HOST_CUR1/0 = 11) or via GPIO mode	0.75	0.80	0.85	V
vRd-SRCdef	Rd Detection Threshold for Source for Default Current (HOST_CUR1/0 = 01) or via GPIO mode	1.50	1.60	1.65	V
vRd-SRC1.5A	Rd Detection Threshold for Source for 1.5 A Current (HOST_CUR1/0 = 10) or via GPIO mode	1.50	1.60	1.65	V
vRd-SRC3A	Rd Detection Threshold for Source for 3 A Current (HOST_CUR1/0 = 11) or via GPIO mode (Note 3)	2.45	2.60	2.75	V
vRa-SNK	Ra Detection Threshold for CC Pin for Sink	0.15	0.20	0.25	V
vRd-def	Rd Default Current Detection Threshold for Sink	0.61	0.66	0.70	V
vRd-1.5A	Rd 1.5 A Current Detection Threshold for Sink	1.16	1.23	1.31	٧
vRd-3.0A	Rd 3 A Current Detection Threshold for Sink	2.04	2.11	2.18	V
vVBUSthr	VBUS_DET Threshold when VBUSOK is deasserted	2.9	3.3	3.67	V
tVBUSdeb	VBUS_DET debounce time before VBUSOK is deasserted only (see tDeb below for VBUSOK being asserted)	10		20	ms
vVBthLH	VBUS_DET Threshold when VBUSOK is asserted	3.67	4.07	4.48	V
tDeb	VBUS_DET debounce time before VBUSOK is asserted	250		500	μs
vVSAFEthr	vSafe0V VBUS_DET Threshold			0.8	V
vVSAFEthrhys	VSAFE0V VBUS_DET Threshold hysteresis		50		mV
rVBUSleak	Leakage between VBUS and GND when VBUS not sourced	72.4			kΩ
rVBUSdschg	Effective resistance from VBUS and GND when VBUS is being discharged from vSafe5V V_{DD} (V) = 2.85 to 5.5			2	kΩ
rPullup	Pull up resistor to VDD value on EN_N pin VDD (V) = 2.85 to 5.5		6		МΩ
vAUTOSNKthr	Weak Battery VDD Threshold	-3%	AUTO SNK_T H	+3%	V
Ra	Resistor for discharging VCONN V _{DD} (V) = 2.85 to 5.5		1		kΩ

^{3.} VDD = 3 V when 3 A current advertised.

Table 7. CURRENT CONSUMPTION

					= -40 to + -40 to +1		
Symbol	Parameter	VDD (V)	Conditions	Min.	Тур.	Max.	Unit
Idisable	Disabled Current	2.85 to 4.35	Disabled State EN N = HIGH or not connected			5	μΑ
Istby	Unattached Sink (3.3 V I ² C mode without AUTOSNK or accessories)	2.85 to 4.35	Nothing attached		5	10	μΑ
	Unattached DRP or Source (3.3 V I ² C mode without AUTOSNK or accessories)		Nothing attached, Internally Toggling		10	15	μΑ
lattach	Attached Source or Sink (3.3 V I ² C mode without AUTOSNK or accessories. Not including lxxx_CCX current)	2.85 to 4.35	Attached as a Sink or Source		10	15	μΑ

Table 8. TIMING PARAMETERS

				-40 to +8 -40 to +12		Unit
Symbol	Parameter		Min.	Тур.	Max.	Unit
tCCDebounce	Debounce Time for CC Attach Detection (TCCDI	EB[2:0] = 011)	-33%	TCCDE B	+33%	ms
tPDDebounce	Time a Sink port shall wait before it can determin	e it is detached	10	15	20	ms
tTryCCDebounce	Time a port shall wait before it can determine it is re-attached during the try-wait process		10		20	ms
tRpValueChange	Time a Sink port shall wait before it can determin change in Rp	e there has been a	10		20	ms
tSRCDisconnect	Time a Source shall detect the SRC.Open state		10		20	ms
tErrorRecovery	Time staying in the ErrorRecovery State if sent the bit or by a change of port roles	nere via the ERROR_REC	25	50	100	ms
tDRPTry	Time staying in the Try.SRC/SNK prior to transition State	on to TryWait.SRC/SNK	75		150	ms
tTryTimeout	Time to discharge VBUS before giving up for cas on.	ses where VBUS is always	550		1100	ms
tDRP	Sum of tDRPTogSNK and tDRPTogSRC		-33%	T_DRP	+33%	ms
tDRPTransition	Time DRP shall complete transitions between Sc	ource and Sink roles	0		1	ms
tDRPTogSNK	For DRP Operation, Time Spent in Unat- tached.SNK before going to Unattached.SRC State	DRPTOGGLE = 00 (Note 4)		70		%
	State	DRPTOGGLE = 01		70		%
		DRPTOGGLE = 10		50		%
		DRPTOGGLE = 11		40		%
tDRPTogSRC	For DRP Operation, Time Spent in Unat- tached.SRC before going to Unattached.SNK State	DRPTOGGLE = 00 (Note 4)		30		%
		DRPTOGGLE = 01		40		%
		DRPTOGGLE = 10		50		%
		DRPTOGGLE = 11		60		%
tEN	Time from EN_N LOW and VDD active to I ² C access available	2.85 to 5.5			100	ms

Table 9. TIMING PARAMETERS (continued)

			T _A =	-40 to +8 -40 to +12	5°C 5°C	Unit
Symbol	Parameter		Min.	Тур.	Max.	Unit
tRESET	Soft Reset Duration	2.85 to 5.5			100	ms
tAUTOSNK	Debounce time to detect Weak Battery VDD Threshold to trigger I_AUTOSNK if AUTOSNK mode enabled for both entering AUTOSNK and exiting AUTOSNK VDD (V) = 2.85 to 5.5		10	15	20	ms

^{4.} Default Value when Configured in GPIO Mode (ADDR/ORIENT = Float)

Table 9. IO SPECIFICATIONS

					–40 to + -40 to +1		
Symbol	Parameter	V _{DD} (V)	Conditions	Min.	Тур.	Max.	Unit
OPEN DR	AIN OUTPUT PINS (ID, INT_N/OUT3)	-	-				
V _{OLID}	Output Low Voltage	2.85 to 5.5	I _{OL} = 4 mA			0.4	V
INPUT PIN	I (EN_N)						
V_{ILEN}	Low-Level Input Voltage	2.85 to 5.5				0.4	V
V _{IHEN}	High-Level Input Voltage	2.85 to 5.5		1.2			V
I _{CCTEN}	VDD Current when EN_N is HIGH	2.85 to 5.5	Worst Input Voltage			2	μΑ
3-STATE	NPUT AND PUSH/PULL OUTPUT PINS (PORT/DE	BUG_N, ADDI	R/ORIENT)				
V _{ILADDR}	Low-Level Input Voltage	2.85 to 5.5				0.2V _{DD}	V
V_{IMADDR}	Middle-Level Input Voltage	2.85 to 5.5		0.4V _{DD}		0.6V _{DD}	V
V _{IHADDR}	High-Level Input Voltage	2.85 to 5.5		0.8V _{DD}			٧
Zfloat	Impedance to VDD or GND detected as a FLOAT including when VDD = 0	2.85 to 5.5		1		4	МΩ
V _{OLOUT}	Low-Level Input Voltage	2.85 to 5.5	I _{OL} = 1 mA			0.2V _{DD}	V
V _{OHOUT}	High-Level Input Voltage	2.85 to 5.5	I _{OL} = -1 mA	0.8V _{DD}			V
I ² C INTER	FACE PINS – FAST MODE SDA/OUT1, SCL/OUT2						
V _{ILI2C}	Low-Level Input Voltage	2.85 to 5.5				0.4	V
V _{IHI2C}	High-Level Input Voltage	2.85 to 5.5		1.2			V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs	2.85 to 5.5		0.2			V
I _{i2C}	Input Current of SDA/OUT1and SCL/OUT2 Pins,	2.85 to 5.5	Input Voltage 0 V to 3.6 V			2	μΑ
I _{CCTI2C}	VDD Current when SDA/OUT1or SCL/OUT2 is HIGH	2.85 to 5.5	Worst Input Voltage			2	μΑ
V _{OLSDA}	Low-Level Output Voltage at 2 mA Sink Current (Open-Drain)	2.85 to 5.5	I _{OL} = 2 mA			0.3	٧
I _{OLSDA}	Low-Level Output Current (Open-Drain)	3.0 to 5.5	V _{OLSDA} = 0.4 V	20			mA
CI	Capacitance for Each I/O Pin	2.85 to 5.5			5		pF

Table 10. FAST MODE I²C TIMING SPECIFICATIONS (see Figure 7)

		Fa	st Mode	
Symbol	Parameter	Min.	Max.	Unit
f _{SCL}	SCL/OUT2 Clock Frequency		400	kHz
t _{HD;STA}	Hold Time (Repeated) START Condition	0.6		μs
t _{LOW}	Low Period of SCL/OUT2 Clock	1.3		μs
t _{HIGH}	High Period of SCL/OUT2 Clock	0.6		μs
t _{SU;STA}	Set-up Time for Repeated START Condition	0.6		μs
t _{HD;DAT}	Data Hold Time		0.9	μs
t _{SU;DAT}	Data Set-up Time (Note 5)	100		ns
t _r	Rise Time of SDA/OUT1 and SCL/OUT2 Signals (Note 6)	20×(V _{DD} /5.5 V)	250	ns
t _f	Fall Time of SDA/OUT1 and SCL/OUT2 Signals (Note 6)	20×(V _{DD} /5.5 V)	250	ns
t _{SU;STO}	Set-up Time for STOP Condition	0.6		μs
t _{BUF}	Bus-Free Time between STOP and START Conditions	1.3		μs
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter		50	ns

- 5. A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement t_{SU;DAT} ☑ 250 ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL/OUT2 signal. If such a device does stretch the LOW period of the SCL/OUT2 signal, it must output the next data bit to the I²C_ line tr_max + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL/OUT2 line is released
- 6. Cb equals the total capacitance of one bus line in pF. If mixed with high-speed devices, faster fall times are allowed according to the I²C specification

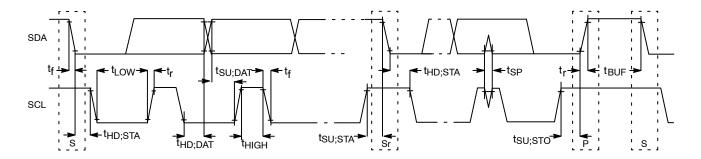


Figure 7. Definition of Timing for Full/Speed Mode Devices on the I²C Bus

REGISTER DEFINITIONS

Table 11. REGISTER MAP

Address	Register Name	Туре	Default	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00h	Reserved	N/A	N/A				Do No	ot Use			
01h	Device ID	R	10h		VER_	ID[3:0]			REV_	ID[3:0]	
02h	Device Type	R	03h				DEVICE_	TYPE[7:0]			
03h	Portrole	R/W	4nh (see below)		ORIENTD EB	TRY	[1:0]	AUDIOAC C	DRP	SNK	SRC
04h	Control	R/W	43h	Т_С	DRP	DRPTOG	GLE[1:0]	DCABLE_ EN	HOST_CUR[1:0]		INT_MAS K
05h	Control1	R/W	23h	REMEDY _EN	AUTO_SN	IK_TH[1:0]	AUTO_SN K_EN	ENABLE	TCCDEB[2:0]		
06h-08h	Reserved	N/A	N/A				Do No	ot Use			
09h	Manual	W/C & R/W	00h			FORCE_S RC	FORCE_S NK	UNATT_S NK	UNATT_S RC	DISABLE D	ERROR_ REC
0Ah	Reset	W/C	00h								SW_RES
0Bh-0Dh	Reserved	N/A	N/A				Do No	ot Use			
0Eh	Mask	R/W	00h		M_ORIEN T	M_FAULT	M_VBUS_ CHG	M_AUTO SNK	M_BC_LV L	M_DETAC H	M_ATTAC H
0Fh	Mask1	R/W	00h		M_REM_ VBOFF	M_REM_ VBON		M_REM_F AIL	M_FRC_F AIL	M_FRC_S UCC	M_REME DY
10h	Reserved	N/A	N/A				Do No	ot Use			
11h	Status	R	40h	AUTOSN K	VSAFE0V	ORIEN	NT[1:0]	VBUSOK	BC_L\	/L[1:0]	ATTACH
12h	Status1	R	00h							FAULT	REMEDY
13h	Туре	R	00h		DEBUGS RC	DEBUGS NK	SINK	SOURCE	ACTIVEC ABLE	AUDIOVB US	AUDIO
14h	Interrupt	R/W1 C	00h		I_ORIENT	I_FAULT	I_VBUS_ CHG	I_AUTOS NK	I_BC_LVL	I_DETAC H	I_ATTACH
15h	Interrupt1	R/W1 C	00h		I_REM_V BOFF	I_REM_V BON		I_REM_F AIL	I_FRC_FA IL	I_FRC_S UCC	I_REMED Y
16h-1Fh	Reserved	N/A	N/A				Do No	ot Use			

Table 12. DEVICE ID (Address: 01h, Reset Value: 0001_0000b, Type: Read Only)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7:4	VER_ID	4	7:4 01h	Device version ID by Trim, etc. A_[REV_ID]: 0001 (FUSB303B A)
3:0	REV_ID	4	3:0 00h	Revision History of each version [VER_ID]_revA: 0000

^{7.} Do not use registers that are blank8. Values read from undefined register bits are not defined and invalid. Do not write to undefined registers

Table 13. DEVICE TYPE (Address: 02h, Type: Read Only)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7:0	DEVICE_TYPE[7:0]	8	7:0 03h	03h: FUSB303B

Table 14. PORTROLE (See Note 9)

(Address: 03h, Reset Value: 0100_1nnnb (Reset value for bits nnn will be set by the state of the PORT/DEBUG_N pin either during power up when EN_N is LOW or when Vdd is valid and EN_N goes HIGH to LOW) or when SW_RES is set HIGH. In dead battery mode, nnn = 010 or configured as SNK) Type: Read/Write)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	Reserved	1	7 0b	Do Not Use
6	ORIENTDEB	1	6 1b	1: When a Debug Accessory is found, continue to orientation detection if CC is on CC1 or CC2 (result is in Status.Orient[1:0])
5:4	TRY[1:0]	2	5:4 00b	00: Disable (normal DRP detection for DRPs) 01: Enable Try.SNK state machine detection for DRP only 10: Enable Try.SRC state machine detection for DRP only 11: Disable (cannot have Try.SNK and Try.SRC active together)
3	AUDIOACC	1	3 1b	Enable Audio Accessory Support (Debug Accessory support is always enabled)
2	DRP	1	2 n	Configure device as a Dual Role Port (see reset value text above)
1	SNK	1	1 n	1: Configure device as a Sink (see reset value text above)
0	SRC	1	0 n	1: Configure device as a Source (see reset value text above)

^{9.} If DRP bit, SNK bit and SRC bit are all set to 1, then the priority of which Portrole the FUSB303B assumes is first priority is DRP, second priority is SNK and last priority is SRC. See Manual register note below for priority between Manual register bits and Portrole register.

Table 15. CONTROL

Address: 04h, Reset Value: 0100_0011b, Type: Read/Write

Bit #	Name	Size (Bits)	Bit#: Default	Description
7:6	T_DRP[:0]	2	7:6 01b	Sets the total period of the DRP toggle cycle (i.e. Unattached.SNK period + Unattached.SRC period): 00: 60 ms 01: 70 ms 10: 80 ms 11: 90 ms
5:4	DRPTOGGLE[1:0]	2	5:4 00b	Selects different timing for Dual Role Port Toggle between Unattached.SNK State and Unattached.SRC State. 00: 60% in Unattached.SNK and 40% in Unattached.SRC 01: 50% in Unattached.SNK and 50% in Unattached.SRC 10: 40% in Unattached.SNK and 60% in Unattached.SRC 11: 30% in Unattached.SNK and 70% in Unattached.SRC
3	DCABLE_EN	1	3 0b	Enable Dangling Cable internal methods to achieve a stable attach
2:1	HOST_CUR[1:0]	2	2:1 01b	Controls the pull-up current when device enabled as a Source 00: Reserved. Do not use. 01: 80 μA – Default USB Power 10: 180 μA – Medium Current Mode: 1.5 A 11: 330 μA – High Current Mode: 3 A
0	INT_MASK	1	1b	1: Global interrupt mask to mask all interrupts

Table 16. CONTROL1

(Address: 05h, Reset Value: 0010_0011b, Type: Read/Write)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	REMEDY_EN	1	7 0b	Enable the Remedy detection to employ internal methods to achieve stable attach
6:5	AUTO_SNK_TH[1:0]	2	6:5 01b	Sets the weak battery VDD threshold voltage when AUTO_SNK_EN is enabled. 00: 3.0 V 01: 3.1 V 10: 3.2 V 11: 3.3 V
4	AUTO_SNK_EN	1	4 0b	Enable automatic Sink port role based on weak battery VDD threshold in bits AUTO_SNK_TH in Control register below
3	ENABLE	1	3 0b	1: Enable the FUSB303B if the external EN_N pin is LOW in I ² C mode (that is, not in GPIO mode)
2:0	TCCDEB[2:0]	3	2:0 011b	Controls debounce time for attaching a device 000: 120 ms 001: 130 ms 010: 140 ms 011: 150 ms 100: 160 ms 101: 170 ms 110: 180 ms 111: Reserved

Table 17. Manual (Note 10)

(Address: 09h, Reset Value: 0000_0000b, Type: Read/Write (see bits below: W/C = Write one self clearing, R/W = Read/Write and N/A = Not Applicable)

Bit #	Name	R/W/C	Size (Bits)	Bit#: Default	Description
7:6	Reserved	N/A	2	7:6 00b	Do Not Use
5	FORCE_SRC	W/C	1	5 0b	1: Forces the FUSB303B to behave as a Source
4	FORCE_SNK	W/C	1	4 0b	1: Forces the FUSB303B to behave as a Sink
3	UNATT_SNK	W/C	1	3 0b	1: Put device in Unattached.SNK State as defined in the Type C spec
2	UNATT_SRC	W/C	1	2 0b	1: Put device in Unattached.SRC state as defined in the Type C spec
1	DISABLED (Note 11)	R/W	1	1 0b	Put device in Disabled state as defined in the Type C spec
0	ERROR_REC	W/C	1	0 0b	1: Put device in ErrorRecovery state as defined in the Type C spec

^{10.} If more than one bit is set to 1b simultaneously then an order of priority will be used. First priority is DISABLED, second is ERROR_REC, third is FORCE_SRC, fourth is FORCE_SNK, fifth is UNATT_SRC, last is UNATT_SNK. The highest priority bit will take precedence and all other bits will be cleared automatically.

Table 18. RESET

(Address: 0Ah, Reset Value: 0000_0000b, Type: Write/Clear)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7:1	Reserved	7	7:1 00h	Do Not Use
0	SW_RES	1	0 0b	1: Reset the FUSB303B and I ² C Registers

^{11.} The DISABLED bit must be manually cleared. Also DISABLED bit has a higher priority over Portrole register since the DISABLED bit has to be cleared in order to execute the new Portrole register settings. However, all other Manual register bits don't have a lot of meaning if the Portrole register is changed and so Portrole register setting should have higher priority than all bits except for DISABLED bit.

Table 19. MASK

(Address: 0Eh, Reset Value: 0000_0000b, Type: Read/Write)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	Reserved	1	7 0b	Do Not Use
6	M_ORIENT	1	6 0b	1: Mask the I_ORIENT interrupt bit from asserting INT_N pin
5	M_FAULT	1	5 0b	1: Mask the I_FAULT interrupt bit from asserting INT_N pin
4	M_VBUS_CHG	1	4 0b	1: Mask the I_VBUS interrupt bit from asserting INT_N pin
3	M_AUTOSNK	1	3 0b	1: Mask the I_AUTOSNK interrupt bit from asserting INT_N pin
2	M_BC_LVL	1	2 0b	1: Mask the I_BC_LVL interrupt bit from asserting INT_N pin
1	M_DETACH	1	1 0b	1: Mask the I_DETACH interrupt bit from asserting INT_N pin
0	M_ATTACH	1	0 0b	1: Mask the I_ATTACH interrupt bit from asserting INT_N pin

^{12.} Masking the interrupt just does not cause INT_N to be asserted. The interrupt bit will still be asserted in the Interrupt register and so that an all zeroes Interrupt register value is not needed for INT_N to be deasserted.

Table 20. MASK1

(Address: 0Fh, Reset Value: 0000_0000b, Type: Read/Write)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	Reserved	1	7 0b	Do Not Use
6	M_REM_VBOFF	1	6 0b	1: Mask the I_REM_VBOFF interrupt bit from asserting INT_N pin
5	M_REM_VBON	1	5 0b	1: Mask the I_REM_VBON interrupt bit from asserting INT_N pin
4	Reserved	1	4 0b	Do Not Use
3	M_REM_FAIL	1	3 0b	1: Mask the I_REM_FAIL interrupt bit from asserting INT_N pin
2	M_FRC_FAIL	1	2 0b	1: Mask the I_FRC_FAIL interrupt bit from asserting INT_N pin
1	M_FRC_SUCC	1	1 0b	1: Mask the I_FRC_SUCC interrupt bit from asserting INT_N pin
0	M_REMEDY	1	0 0b	1: Mask the I_REMEDY interrupt bit from asserting INT_N pin

^{13.} Masking the interrupt just does not cause INT_N to be asserted. The interrupt bit will still be asserted in the Interrupt register and so that an all zeroes Interrupt register value is not needed for INT_N to be deasserted.

Table 21. STATUS

(Address: 11h, Reset Value: 0000_0000b, Type: Read Only)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	AUTOSNK	1	7 0b	1:AUTOSNK mode is activated since the VDD voltage is lower than AUTO_SNK_TH voltage
6	VSAFE0V	1	6 0b	1: Status to indicate VBUS_DET is below vSafe0V max of 0.8 Vpin
5:4	ORIENT[1:0]	2	5:4 00b	Status to indicate which CCx pins has the cable CC connection 00: No or unresolved connection detected 01: Cable CC is connected through the CC1 (A5) pin 10: Cable CC is connected through the CC2 (B5) pin 11: A fault has occurred during the detection
3	VBUSOK	1	3 0b	1: Status to indicate VBUS_DET is in the valid VBUS 5V range
2:1	BC_LVL[1:0]	2	2:1 00b	Thresholds that allow detection of current advertisement on CC line 00: (Ra or unattached) Sink or unattached Source 01: Rd threshold for Sink default current advertisement 10: Rd threshold for Sink 1.5 A current advertisement 11: Rd threshold for Sink 3 A current advertisement
0	ATTACH	1	0 0b	1: Attached to a device or accessory of a type shown in the Type register

Table 22. STATUS1

(Address: 12h, Reset Value: 0000_0000b, Type: Read Only)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7:2	Reserved	6	7:2 00h	Do Not Use
1	FAULT	1	1 0b	1: Status to indicate that as a Sink, CC has exceed the normal vRd voltage range $$
0	REMEDY	1	0 0b	1: Status to indicate that FUSB303B is employing internal methods to achieve a stable attach

Table 23. TYPE

(Address: 13h, Reset Value: 0000_0000b, Type: Read Only)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	Reserved	1	7 0b	Do Not Use
6	DEBUGSRC	1	6 0b	Trushing the street of th
5	DEBUGSNK	1	5 0b	1: FUSB303B is attached as a Sink Debug Accessory (DebugAccessory.SNK)
4	SINK	1	4 0b	1: FUSB303B is attached as a Sink (Attached.SNK)
3	SOURCE	1	3 0b	1: FUSB303B is attached as a Source (Attached.SRC)
2	ACTIVECABLE	1	2 0b	1: FUSB303B is attached to an Active Cable (Ra detected)
1	AUDIOVBUS	1	1 0b	Indicates an Audio Accessory with VBUS has been detected (AudioAccessory with VBUS)
0	AUDIO	1	0 0b	Indicates an Audio Accessory without VBUS has been detected (AudioAccessory without VBUS)

Table 24. INTERRUPT

(Address: 14h, Reset Value: 0000_0000b, Type: Read/Write 1 to Clear)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	Reserved	1	7 0b	Do Not Use
6	I_ORIENT	1	6 0b	1: Interrupt flagged whenever ORIENT changes from 0,0 to 0,1 or 1,0 but not 1,1. Interrupt not flagged when ORIENT is cleared.
5	I_FAULT	1	5 0b	1: Interrupt flagged when CC1 or CC2 voltage exceeds normal Rd range when FUSB303B has Rd termination on CC1 and/or CC2
4	I_VBUS_CHG	1	4 0b	Interrupt flagged when VBUS has crossed vVBUSthr or vVBthLH thresholds
3	I_AUTOSNK	1	3 0b	Interrupt flagged when AUTOSNK mode has been activated or deactivated
2	I_BC_LVL	1	2 0b	Interrupt flagged when a change in BC_LVL[1:0] advertised current level has occurred
1	I_DETACH	1	1 0b	Interrupt flagged when a device or accessory has been detached
0	I_ATTACH	1	0 0b	Interrupt flagged when a device or accessory of type indicated in the Type register has been attached

Table 25. INTERRUPT1

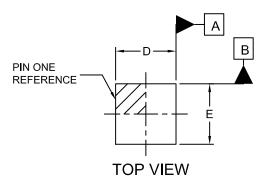
(Address: 15h, Reset Value: 0000_0000b, Type: Read/Write 1 to Clear)

Bit #	Name	Size (Bits)	Bit#: Default	Description
7	Reserved	1	7 0b	Do Not Use
6	I_REM_VBOFF	1	6 0b	Interrupt to request VBUS be turned off and discharged while executing internal methods to achieve stable attach
5	I_REM_VBON	1	5 0b	Interrupt to request VBUS be turned on while executing internal methods to achieve stable attach
4	Reserved	1	4 0b	Do Not Use
3	I_REM_FAIL	1	3 0b	Interrupt to indicate that internal methods to achieve stable attach have failed.
2	I_FRC_FAIL	1	2 0b	Interrupt to indicate that FORCE_SRC or FORCE_SNK has failed to execute either because it was being forced into a state it was already in or for other reasons
1	I_FRC_SUCC	1	1 0b	Interrupt to indicate that FORCE_SRC or FORCE_SNK has successfully being executed.
0	I_REMEDY	1	0 0b	Interrupt to indicate that detection issues caused FUSB303B to employ internal methods to achieve stable attach

ORDERING INFORMATION TABLE

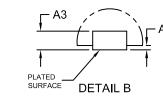
Table 26. AVAILABLE PART NUMBERS

Part Number	Top Mark	Operating Temperature Range	Package	Packing Method [†]
FUSB303BTMX	UN	−40 to 85°C	12-Lead Ultra-thin Molded Leadless Package (QFN) 1.6 mm x 1.6 mm x 0.375 mm	Tape and Reel

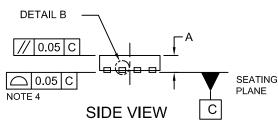

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

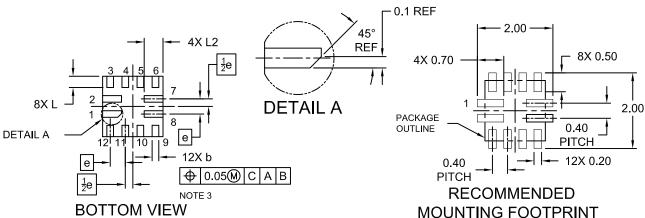
All brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.

ON


X2QFN12 1.6x1.6, 0.4PCASE 722AG ISSUE A

DATE 26 SEP 2017




NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 6 APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 0.10 AND 0.20mm FROM THE TERMINAL TIP.
- 4. PROFILE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
Α	0.34	0.37	0.40	
A1		-	0.05	
А3	0.127 REF			
b	0.15	0.175	0.20	
D	1.55	1.60	1.65	
E	1.55	1.60	1.65	
е	0.40 BSC			
L	0.25	0.30	0.35	
L2	0.45	0.50	0.55	

DOCUMENT NUMBER:	98AON13772G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	X2QFN12 1.6x1.6, 0.4P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com