## NLAS4052

## Analog Multiplexer/ Demultiplexer Double-Pole, 4-Position Plus Common Off

The NLAS4052 is an improved version of the MC14052 and MC74HC4052 fabricated in sub-micron Silicon Gate CMOS technology for lower $\mathrm{R}_{\mathrm{DS}(\text { on })}$ resistance and improved linearity with low current. This device may be operated either with a single supply or dual supply up to $\pm 3 \mathrm{~V}$ to pass a $6 \mathrm{~V}_{\text {PP }}$ signal without coupling capacitors.

When operating in single supply mode, it is only necessary to tie $\mathrm{V}_{\mathrm{EE}}$, pin 7 to ground. For dual supply operation, $\mathrm{V}_{\mathrm{EE}}$ is tied to a negative voltage, not to exceed maximum ratings.

- Improved $\mathrm{R}_{\mathrm{DS}(\text { on) }}$ Specifications
- Pin for Pin Replacement for MAX4052 and MAX4052A
- One Half the Resistance Operating at 5.0 Volts
- Single or Dual Supply Operation
- Single 2.5-5 Volt Operation, or Dual $\pm 3$ Volt Operation
- With $\mathrm{V}_{\mathrm{CC}}$ of 3.0 to 3.3 V , Device Can Interface with 1.8 V Logic, No Translators Needed
- Address and Inhibit pins are Logic is Over-Voltage Tolerant and May Be Driven Up +6 V Regardless of $\mathrm{V}_{\mathrm{CC}}$
- Address and Inhibit pins are Standard TTL Compatible
- Greatly Improved Noise Margin Over MAX4052 and MAX4052A
- Improved Linearity Over Standard HC4052 Devices
- Popular SOIC, and Space Saving TSSOP, and QSOP 16 Pin Packages


## ON Semiconductor ${ }^{\text {r }}$

http://onsemi.com

MARKING DIAGRAMS


SO-16 D SUFFIX CASE 751B


TSSOP-16 DT SUFFIX CASE 948F


QSOP-16 QS SUFFIX CASE 492

| A | $=$ Assembly Location |
| :--- | :--- |
| WL, L | $=$ Wafer Lot |
| Y | $=$ Year |
| WW, W | $=$ Work Week |

ORDERING INFORMATION

| Device | Package | Shipping |
| :--- | :---: | :---: |
| NLAS4052DR2 | SO-16 | 2500 Units/Reel |
| NLAS4052DTR2 | TSSOP-16 | 2500 Units/Reel |
| NLAS4052QSR | QSOP-16 | 2500 Units/Reel |



Figure 1. Pin Connection (Top View)


Figure 2. Logic Diagram

TRUTH TABLE

| Inhibit | Address |  | ON SWITCHES* |
| :---: | :---: | :---: | :---: |
|  | B | A |  |
| 1 | $\begin{gathered} \mathrm{X} \\ \text { don't care } \end{gathered}$ | $\begin{gathered} \mathrm{X} \\ \text { don't care } \end{gathered}$ | All switches open |
| 0 | 0 | 0 | $\begin{aligned} & \mathrm{COM}_{\mathrm{A}}-\mathrm{NO}_{\mathrm{OA}}, \\ & \mathrm{COM}_{\mathrm{B}}-\mathrm{NO}_{\mathrm{OB}} \end{aligned}$ |
| 0 | 0 | 1 | $\begin{aligned} & \mathrm{COM}_{\mathrm{A}}-\mathrm{NO}_{1 \mathrm{~A}}, \\ & \mathrm{COM}_{\mathrm{B}}-\mathrm{NO}_{1 \mathrm{~B}} \end{aligned}$ |
| 0 | 1 | 0 | $\begin{aligned} & \mathrm{COM}_{\mathrm{A}}-\mathrm{NO}_{2 \mathrm{~A}}, \\ & \mathrm{COM}_{\mathrm{B}}-\mathrm{NO}_{2 \mathrm{~B}} \end{aligned}$ |
| 0 | 1 | 1 | $\begin{aligned} & \mathrm{COM}_{\mathrm{A}}-\mathrm{NO}_{3 \mathrm{~A}}, \\ & \mathrm{COM}_{\mathrm{B}}-\mathrm{NO}_{3 \mathrm{~B}} \end{aligned}$ |

*NO and COM pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

MAXIMUM RATINGS (Note 1)


1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
2. The absolute value of $\mathrm{V}_{\mathrm{CC}} \pm\left|\mathrm{V}_{\mathrm{EE}}\right| \leq 7.0$.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.
6. Tested to EIA/JESD78.

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter |  | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{EE}}$ | Negative DC Supply Voltage | (Referenced to GND) | -5.5 | GND | V |
| $\mathrm{V}_{\text {CC }}$ | Positive DC Supply Voltage | (Referenced to GND) (Referenced to $\mathrm{V}_{\mathrm{EE}}$ ) | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 5.5 \\ & 6.6 \end{aligned}$ | V |
| $\mathrm{V}_{\text {IS }}$ | Analog Input Voltage |  | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{cc}}$ | V |
| $\mathrm{V}_{\text {IN }}$ | Digital Input Voltage | (Note 7) (Referenced to GND) | 0 | 5.5 | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range, All Package Types |  | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Rise/Fall Time (Channel Select or Enable Inputs) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 100 \\ & 20 \end{aligned}$ | ns/V |

7. Unused digital inputs may not be left open. All digital inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

| Symbol | Parameter | Condition | $\mathrm{V}_{\mathrm{cc}}$ | Guaranteed Max Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ | $<85^{\circ} \mathrm{C}$ | $<125^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High-Level Input Voltage, Enable Inputs |  | $\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{gathered} \hline 1.75 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$ | $\begin{gathered} \hline 1.75 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$ | $\begin{gathered} \hline 1.75 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$ | V |
| VIL | Maximum Low-Level Input Voltage, Enable Inputs |  | $\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{gathered} 0.45 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | $\begin{gathered} 0.45 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | $\begin{gathered} 0.45 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | V |
| $\mathrm{I}_{\mathrm{N}}$ | Maximum Input Leakage Current, Address or Inhibit Inputs | $\mathrm{V}_{\text {IN }}=6.0$ or GND | 0 V to 6.0 V | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Maximum Quiescent Supply Current (per Package) | Address, Inhibit and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND | 6.0 | 4.0 | 40 | 80 | $\mu \mathrm{A}$ |

DC ELECTRICAL CHARACTERISTICS - Analog Section

| Symbol | Parameter | Test Conditions | $\underset{\mathrm{VC}}{\mathrm{~V}_{\mathrm{cc}}}$ | $\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{EE}}}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\mathrm{R}_{\text {ON }}$ | Maximum "ON" Resistance (Note 8) | $\begin{aligned} & \mathrm{V}_{I \mathrm{~N}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {IS }}=\mathrm{V}_{\mathrm{EE}} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \\| \mathrm{IS}=10 \mathrm{~mA} \\ & \text { (Figures } 4 \text { thru } 9 \text { ) } \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & 86 \\ & 37 \\ & 26 \end{aligned}$ | $\begin{gathered} 108 \\ 46 \\ 33 \end{gathered}$ | $\begin{aligned} & 120 \\ & 55 \\ & 37 \end{aligned}$ | $\Omega$ |
| $\Delta \mathrm{R}_{\text {ON }}$ | Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IS}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{I S}=3.5 \mathrm{~V} \\ & \mid \mathrm{IS}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IS}}=2.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & 15 \\ & 13 \\ & 10 \end{aligned}$ | $\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$ | $\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$ | $\Omega$ |
| $\mathrm{R}_{\text {flat(ON) }}$ | ON Resistance Flatness | $\begin{array}{ll} \mid \mathrm{IS}_{\mathrm{S}}=10 \mathrm{~mA} & \mathrm{~V}_{\text {com }} 1,2,3.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {com }}-2,0,2 \mathrm{~V} \end{array}$ | $\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$ | -3.0 | $\begin{aligned} & 4 \\ & 2 \end{aligned}$ | $\begin{aligned} & 4 \\ & 2 \end{aligned}$ | $\begin{aligned} & 5 \\ & 3 \end{aligned}$ | $\Omega$ |
| $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$ ${ }^{\text {NOO}}$ (OFF) | Maximum Off-Channel Leakage Current | Switch Off $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{EE}}+1.0 \mathrm{~V} \end{aligned}$ <br> (Figure 17) | $\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} 0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | nA |
| ICOM(ON) | Maximum On-Channel Leakage Current, Channel-to-Channel | Switch On <br> $\mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{EE}}+1.0 \mathrm{~V}$ <br> (Figure 17) | $\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} 0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | nA |

8. At supply voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) approaching 2.5 V the analog switch on-resistance becomes extremely non-linear. Therefore, for low voltage operation it is recommended that these devices only be used to control digital signals.

AC CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ )

| Symbol | Parameter | Test Conditions | $\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$ | $\stackrel{\mathrm{V}_{\mathrm{EE}}}{\mathrm{~V}}$ | Guaranteed Limit |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ |  | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
|  |  |  |  |  | Min | Typ* |  |  |  |
| $\mathrm{t}_{\text {BBM }}$ | Minimum Break-Before-Make | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ | 3.0 | 0.0 | 1.0 | 6.5 | - | - | ns |
|  | Time | $V_{\text {IS }}=V_{\text {IC }}$ | 4.5 | 0.0 | 1.0 | 5.0 | - | - |  |
|  |  | $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ <br> (Figure 19) | 3.0 | -3.0 | 1.0 | 3.5 | - | - |  |

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS ( $C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ )

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}$ <br> V | $\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{VE}}}$ | Guaranteed Limit |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ |  |  | $\leq 85^{\circ} \mathrm{C}$ |  | $\leq 125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| ttrans | Transition Time (Address Selection Time) (Figure 18) | $\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$ |  | $\begin{aligned} & \hline 22 \\ & 20 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & \hline 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$ |  | 45 30 25 25 |  | $\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$ | ns |
| ton | Turn-on Time <br> (Figures 14, 15, 20, and 21) Inhibit to $\mathrm{N}_{\mathrm{O}}$ or $\mathrm{N}_{\mathrm{C}}$ | $\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$ |  | 22 20 16 16 | $\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$ |  | 45 30 25 25 |  | $\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$ | ns |
| toff | Turn-off Time <br> (Figures 14, 15, 20, and 21) Inhibit to $\mathrm{N}_{\mathrm{O}}$ or $\mathrm{N}_{\mathrm{C}}$ | $\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$ |  | 22 20 16 16 | $\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$ |  | 45 30 25 25 |  | 50 35 30 28 | ns |


|  |  | Typical @ $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$ |  |
| :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Maximum Input Capacitance,Select Inputs | 8 | pF |
| $\mathrm{C}_{\mathrm{NO}}$ or $\mathrm{C}_{\mathrm{NC}}$ | Analog I/O | 10 |  |
| $\mathrm{C}_{\mathrm{COM}}$ | Common I/O | 10 |  |
| $\mathrm{C}_{(\mathrm{ON})}$ | Feedthrough | 1.0 |  |

NLAS4052

ADDITIONAL APPLICATION CHARACTERISTICS (GND $=0 \mathrm{~V}$ )

| Symbol | Parameter | Condition | $\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$ | $\mathrm{v}_{\mathrm{EE}}$ | Typ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $25^{\circ} \mathrm{C}$ |  |
| BW | Maximum On-Channel Bandwidth or Minimum Frequency Response | $\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Source Amplitude }=0 \mathrm{dBm} \\ & \text { (Figures } 10 \text { and } 22 \text { ) } \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & 110 \\ & 130 \\ & 140 \\ & 140 \end{aligned}$ | MHz |
| VISO | Off-Channel Feedthrough Isolation | $\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Source }=0 \mathrm{dBm} \\ & \text { (Figures } 12 \text { and 22) } \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & -93 \\ & -93 \\ & -93 \\ & -93 \end{aligned}$ | dB |
| $\mathrm{V}_{\text {ONL }}$ | Maximum Feedthrough On Loss | $\begin{aligned} & \mathrm{V}_{\text {IS }}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}\right) \\ & \text { Source }=0 \mathrm{dBm} \\ & \text { (Figures } 10 \text { and 22) } \end{aligned}$ | $\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$ | dB |
| Q | Charge Injection | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE},} \mathrm{f}_{\mathrm{IS}}=1 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ $R_{I S}=0 \Omega, C_{L}=1000 \mathrm{pF}, \mathrm{Q}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }}$ (Figures 16 and 23) | $\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} \hline 0.0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & \hline 9.0 \\ & 12 \end{aligned}$ | pC |
| THD | Total Harmonic Distortion THD + Noise | $\mathrm{f}_{\mathrm{I}}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, }$ <br> $\mathrm{V}_{\text {IS }}=5.0 \mathrm{~V}_{\mathrm{PP}}$ sine wave <br> $\mathrm{V}_{\text {IS }}=6.0 \mathrm{~V}_{\mathrm{PP}}$ sine wave <br> (Figure 13) | $\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$ | $\begin{gathered} 0.0 \\ -3.0 \end{gathered}$ | $\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$ | \% |



Figure 3. $\mathrm{I}_{\mathrm{CC}}$ versus Temp, $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ and 5 V


Figure 5. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$


Figure 7. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$


Figure 4. $\mathrm{R}_{\mathrm{ON}}$ versus $\mathrm{V}_{\mathrm{CC}}$, Temp $=25^{\circ} \mathrm{C}$


Figure 6. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$


Figure 8. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

## NLAS4052



Figure 9. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$


Figure 10. Bandwidth, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$


Figure 12. Off Isolation, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$


Figure 11. Phase Shift, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$


Figure 13. Total Harmonic Distortion


Figure 14. $\mathrm{t}_{\mathrm{ON}}$ and $\mathrm{t}_{\mathrm{OFF}}$ versus $\mathrm{V}_{\mathrm{CC}}$


Figure 16. Charge Injection versus COM Voltage


Figure 15. $\mathrm{t}_{\mathrm{ON}}$ and $\mathrm{t}_{\mathrm{OFF}}$ versus Temp


Figure 17. Switch Leakage versus Temperature


Figure 18. Channel Selection Propagation Delay


Figure 19. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)


Figure 20. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$


Figure 21. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$


Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$


Figure 23. Charge Injection: (Q)

## TYPICAL OPERATION



Figure 24. 5.0 Volts Single Supply $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0$


Figure 25. Dual Supply $V_{C C}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$

DEVICE ORDERING INFORMATION

| Device Order <br> Number | Device Nomenclature |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Circuit <br> Indicator | Technology | Device <br> Function | Package <br> Suffix | Tape \& Reel <br> Suffix | Package Type | Tape \& Reel Size |
|  | NL | AS | 4052 | D | R2 | SO | 2500 Unit Reel |
| NLAS4052DTR2 | NL | AS | 4052 | DT | R2 | TSSOP | 2500 Unit Reel |
| NLAS4052QSR | NL | AS | 4052 | QS | R | QSOP | 2500 Unit Reel |

## NLAS4052

## PACKAGE DIMENSIONS



## NLAS4052

## PACKAGE DIMENSIONS



## NLAS4052

## PACKAGE DIMENSIONS



ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

