ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Ultra-Small Dual Single Pole, Single Throw Analog Switch with Over Voltage Tolerance

The NLAS2066 is a Dual SPST (Single Pole, Single Throw) Analog Switch high performance version of the popular NLAS323. Packaged in the ultra–small US8 package. It is designed as a general analog/digital switch and can also be used to isolate USB ports.

Features

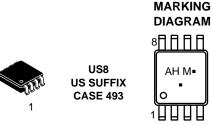
- Same Pinout as the Popular NLAS323
- Excellent Performance Maximum RDS_{ON} 15 Ω at 3.0 V
- Matching Between the Switches $\pm 1.5 \Omega$ at 3.0 V
- 1.65 V to 5.5 V Operating Range
- Lower Threshold Voltages for LVTTL/CMOS Levels
- Ultra–Low Charge Injection ≤ 4.8 pC at 3.0 V
- Low Standby Power $I_{CC} = 1.0 \text{ nA (max)} @ T_A = 25^{\circ}C$
- CMOS Level Compatibility
- OVT* (Pins 1, 3, 5, and 7) These Pins may be Subjected to 0 to +7.0 V, Regardless of Operating Voltage
- Allows a Short from USB Line without Damage to the Device
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- USB Isolation
- Cell Phones
- PDAs
- MP3s Digital Still Cameras

Important Information

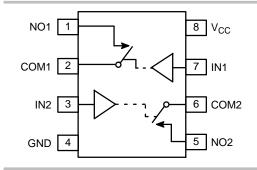
• ESD Protection: Human Body Model; > 1500 V


Machine Model; > 200 V

• Latch-Up Maximum Rating: 200 mA

ON Semiconductor®

www.onsemi.com



AH = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

Pin	Function	OVT
1	NO1	Yes
2	COM1	-
3	IN2	Yes
4	GND	-
5	NO2	Yes
6	COM2	_
7	IN1	Yes
8	V _{CC}	-

FUNCTION TABLE

On/Off Enable Input	State of Analog Switch
L	Off
H	On

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

^{*}Over Voltage Tolerance (OVT) enables pins to function outside (higher) of their operating voltages, with no damage to the devices or to signal integrity.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage Pins 1, 3, 5, 7 Pins 2, 6	-0.5 to +7.0 -0.5 to V _{CC}	V
Vo	DC Output Voltage	-0.5 to +7.0	V
I _{IK}	DC Input Diode Current $V_I < GND$	-50	mA
I _{OK}	DC Output Diode Current V _O < GND	-50	mA
I _O	DC Output Sink Current	±50	mA
I _{CC}	DC Supply Current per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature under Bias	+150	°C
θ_{JA}	Thermal Resistance (Note 1)	250	°C/W
P _D	Power Dissipation in Still Air at 85°C	250	mW
MSL	Moisture Sensitivity	Level 1	_
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	_
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 1500 > 200 N/A	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow
- 2. Tested to EIA/JESD22-A114-A
- 3. Tested to EIA/JESD22-A115-A
- 4. Tested to JESD22-C101-A

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	Digital Input Voltage (INx)	GND	5.5	V	
V _{IO}	Static or Dynamic Voltage Across an Off Switch		GND	V _{CC}	V
V _{IS}	Analog Input Voltage	NO COM	GND GND	5.5 V _{CC}	V
T _A	Operating Temperature Range, All Package Types		- 55	+125	°C
t _r , t _f	Input Rise or Fall Time (Enable Input)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VS. TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

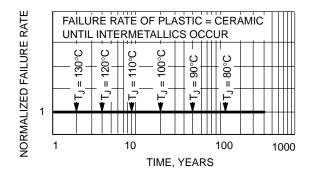


Figure 1. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

				Guaranteed Max Limit			
Symbol	Parameter	Condition	V _{CC}	25°C	−40 to 85°C	−55 to <125°C	Unit
V _{IH}	Minimum High– Level Input Voltage, Enable Inputs		2.3 ± 10% 2.7 ± 10% 3.0 ± 10% 5.0 ± 10%	V _{CC} x 0.55 V _{CC} x 0.55 V _{CC} x 0.55 V _{CC} x 0.55	V _{CC} x 0.55 V _{CC} x 0.55 V _{CC} x 0.55 V _{CC} x 0.55	V _{CC} x 0.55 V _{CC} x 0.55 V _{CC} x 0.55 V _{CC} x 0.55	V
V _{IL}	Maximum Low– Level Input Voltage, Enable Inputs		2.3 ± 10% 2.7 ± 10% 3.0 ± 10% 5.0 ± 10%	V _{CC} x 0.30 V _{CC} x 0.30 V _{CC} x 0.30 V _{CC} x 0.30	V _{CC} x 0.30 V _{CC} x 0.30 V _{CC} x 0.30 V _{CC} x 0.30	V _{CC} x 0.30 V _{CC} x 0.30 V _{CC} x 0.30 V _{CC} x 0.30	V
I _{IN}	Maximum Input Leakage Current, Enable Inputs	$V_{IN} = 5.5 \text{ V or GND}$	0 V to 5.5 V	<u>+</u> 0.1	<u>+</u> 1.0	<u>±</u> 1.0	μΑ
I _{CC}	Maximum Quies- cent Supply Current (per package)	Enable and $V_{IS} = V_{CC}$ or GND	5.5	1.0	1.0	2.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DC ELECTRICAL CHARACTERISTICS – Analog Section

				Guaranteed Max Limit			
Symbol	Parameter	Condition	Vcc	25°C	−40 to 85°C	−55 to <125°C	Unit
R _{ON}	Maximum On	$V_{IN} = V_{IH}$ $I_s = 8 \text{ mA}$	2.3	50	54	54	Ω
	Resistance	$V_{IS} = V_{CC}$ to GND $I_s = 8$ mA	2.7	20	24	24	
		$I_s = 24 \text{ mA}$	3.0	15	19	19	
		$I_s = 32 \text{ mA}$	4.5	7	11	11	
		(Figures 2 and 3)					
R _{FLAT(ON)}	On Resistance	$V_{IN} = V_{IH}$ $I_s = 8 \text{ mA}$	2.3	60	60	60	Ω
	Flatness	$V_{IS} = 0$ to V_{CC} $I_{S} = 8$ mA	2.7	24	24	24	
		$I_s = 24 \text{ mA}$	3.0	13.5	13.5	13.5	
		$I_s = 32 \text{ mA}$	4.5	3.0	3.0	3.0	
		(Figure 5)					
Δ R _{ON}	On Resistance	V _{IS} = 1.4 V	2.3	1.3	1.3	1.3	Ω
	Match Between	V _{IS} = 1.6 V	2.7	1.4	1.4	1.4	
	Channels	V _{IS} = 1.8 V	3.0	1.5	1.5	1.5	
		$V_{IS} = 2.7 \text{ V}$	4.5	2.0	2.0	2.0	
		(Figures 4, 5 and 6)					
I _{NO(OFF)}	Off Leakage Current	$V_{IN} = V_{IL}$	5.5	1.0	10	100	nΑ
		$V_{NO} = 1.0 \text{ V}, V_{COM} = 4.5 \text{ V}$					
		$V_{COM} = 1.0 \text{ V} \text{ and } V_{NO} 4.5 \text{ V}$					
I _{COM(OFF)}	Off Leakage Current	$V_{IN} = V_{IL}$ $V_{NO} = 4.5 \text{ V or } 1.0 \text{ V}$ $V_{COM} = 1.0 \text{ V or } 4.5 \text{ V}$	5.5	1.0	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_{\text{r}} = t_{\text{f}} = 3.0 \text{ ns}$)

						G	uarant	teed M	ax Lin	nit			
			Vcc		25°C		-4	0 to 85	5°C	-55	to <12	25°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{ON}	Turn-On Time	$R_L = 300 \Omega$, $C_L = 35 pF$ (Figures 7, 14 and 15)	2.3 2.7 3.0 4.5		8 4 3 2	9 5 4 3			10 7 6 5			10 7 6 5	ns
t _{OFF}	Turn-Off Time	$R_L = 300 \ \Omega, C_L = 35 \ pF$ (Figures 7, 14 and 15)	2.3 2.7 3.0 4.5		8 6 5 4	10 8 7 6			11 9 8 7			11 9 8 7	ns

		Typical @ 25°C, V _{CC} = 5.0 V	Unit
C _{IN}	Maximum Input Capacitance, Select Input	3.0	pF
C _{NO} or C _{NC}	Analog I/O (Switch Off)	10	
C _{COM(OFF)}	Common I/O (Switch Off)	10	
C _{COM(ON)}	Feedthrough (Switch Off)	10	

ADDITIONAL APPLICATIONS CHARACTERISTICS (Voltage Reference to GND Unless Noted)

Symbol	Parameter	Condition	V _{CC} (V)	Typical 25°C	Unit
BW	Maximum On–Channel –3.0 dB Bandwidth or Minimum Frequency Response	V _{IS} = 0 dBm (Figure 8 and 9)	2.3 2.7 3.0 4.5	102 175 180 186	MHz
V _{ONL}	Maximum Feed-Through On Loss	V _{IS} = 0 dBm @ 10 kHz (Figure 8 and 9)	2.3 2.7 3.0 4.5	-2.2 -0.9 -0.8 -0.4	dB
V _{ISO}	Off-Channel Isolation	$f = 100 \text{ kHz}$ $V_{IS} = 1.0 \text{ V RMS}$ (Figure 10 and 11)	2.3 2.7 3.0 4.5	-73 -74 -74 -75	dB
Q	Charge Injection Enable Input to Common I/O	$V_{IS} = V_{CC}$ to GND, $F_{IS} = 20$ kHz (Figure 12)	3.0 5.5	4.8 7.4	рС
THD	Total Harmonic Distortion TDH + Noise	F_{IS} = 10 Hz to 100 kHz, R_L = Rgen = 600 Ω , C_L = 50 pF (Figure 13)	3.0 5.5	0.19 0.06	%

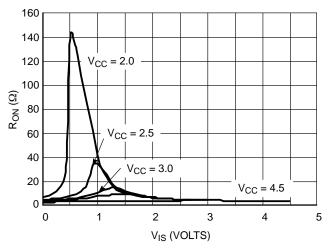


Figure 2. R_{ON} vs. V_{COM} and V_{CC} (@25°C)

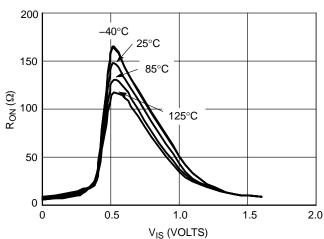


Figure 3. R_{ON} vs. V_{COM} and Temperature, V_{CC} = 2.0 V

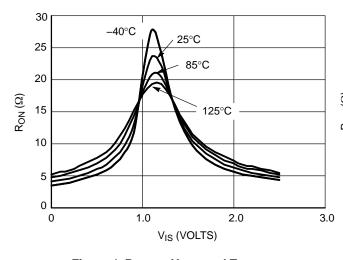


Figure 4. R_{ON} vs. V_{COM} and Temperature, V_{CC} = 2.5 V

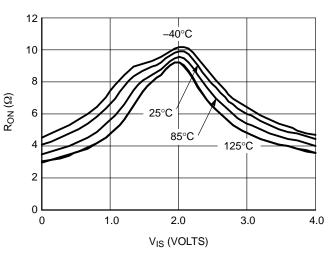


Figure 5. R_{ON} vs. V_{COM} and Temperature, V_{CC} = 3.0 V

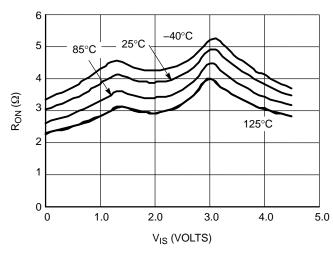
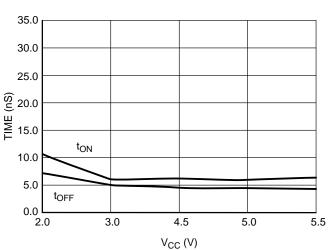
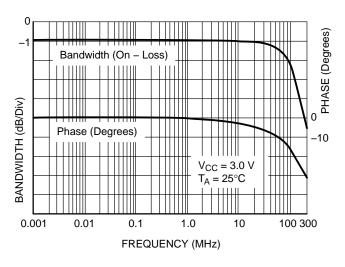
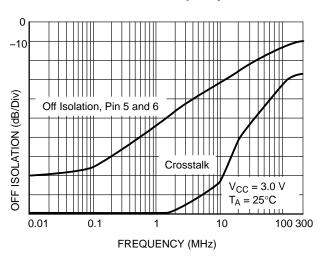


Figure 6. R_{ON} vs. V_{COM} and Temperature, V_{CC} = 4.5 V


Figure 7. Switching Time vs. Supply Voltage, $T = 25^{\circ}C$

0 -1 Bandwidth (On – Loss) Phase (Degrees) Phase (Degrees) -10 V_{CC} = 5.0 V T_A = 25°C 0.001 0.01 0.1 1.0 10 100 300 FREQUENCY (MHz)

Figure 8. ON Channel Bandwidth and Phase Shift Over Frequency

Figure 9. ON Channel Bandwidth and Phase Shift Over Frequency

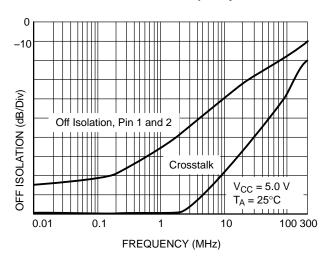
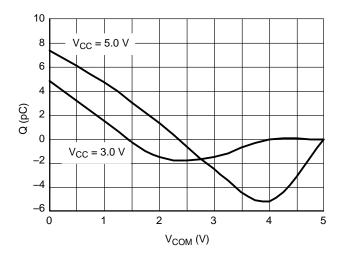



Figure 10. Off Isolation and Crosstalk

Figure 11. Off Isolation and Crosstalk

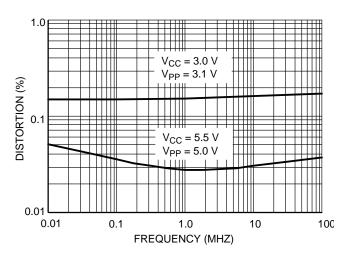


Figure 12. Charge Injection vs. V_{COM}

Figure 13. THD vs. Frequency

TIMING INFORMATION

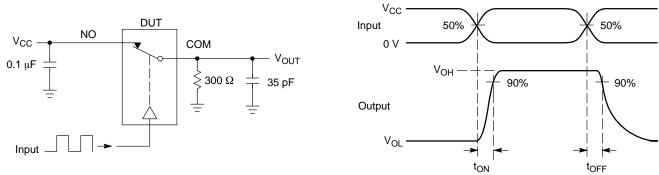


Figure 14. t_{ON}/t_{OFF}

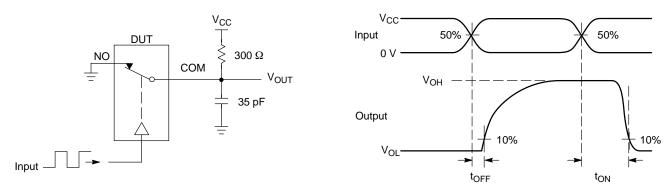


Figure 15. t_{ON}/t_{OFF}

V _{CC}	VMI
2.0 V	1.0 V
3.0 V	1.5 V
4.5 V	1.5 V

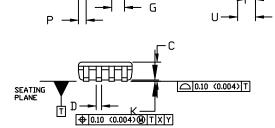
DEVICE ORDERING INFORMATION

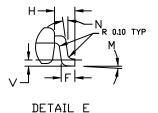
Device Order Number	Package	Shipping [†]
NLAS2066USG	US8 (Pb-Free)	3,000 / Tape & Reel
NLAS2066UST3G	US8 (Pb-Free)	10,000 / Tape & Reel

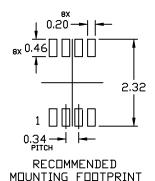
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

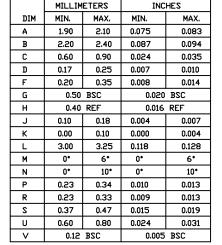
日日日

В

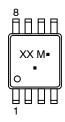

US8 CASE 493 ISSUE E


DETAIL E


DATE 30 APR 2021


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSION, OR GATE BURR. MOLD FLASH, PROTRUSION, OR GATE BURR SHALL NOT EXCEED 0.14 (0.0055*) PER SIDE.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14 (0.0055*) PER SIDE.
- LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0.0203 MM (0.003-0.008°).
- 6. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED ±0.0508 MM (0.002").



GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON04475D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	US8		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnotized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative