MC74HC4066A

Quad Analog Switch/ Multiplexer/Demultiplexer

High-Performance Silicon-Gate CMOS

The MC74HC4066A utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/ multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The HC4066A is identical in pinout to the metal-gate CMOS MC14016 and MC14066. Each device has four independent switches. The device has been designed so the ON resistances $\left(\mathrm{R}_{\mathrm{ON}}\right)$ are more linear over input voltage than R_{ON} of metal-gate CMOS analog switches.

The ON/OFF control inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. For analog switches with voltage-level translators, see the HC4316A.

Features

- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Wide Power-Supply Voltage Range ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0$ to 12.0 V
- Analog Input Voltage Range ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0$ to 12.0 V
- Improved Linearity and Lower ON Resistance over Input Voltage than the MC14016 or MC14066
- Low Noise
- Chip Complexity: 44 FETs or 11 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING DIAGRAMS

TSSOP-14 DT SUFFIX CASE 948G

14 H月
HC 4066A ALYW-


```
A = Assembly Location
WL, L = Wafer Lot
Y = Year
WW, W = Work Week
G or ! = Pb-Free Package
```

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC74HC4066A

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC4066ADG	SOIC-14 (Pb-Free)	55 Units / Rail
MC74HC4066ADR2G	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC4066ADR2G*	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel
MC74HC4066ADTR2G	NLVHC4066ADTR2G*	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)	-0.5 to +14.0	V
$\mathrm{~V}_{\text {IS }}$	Analog Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I	DC Current Into or Out of Any Pin	± 25	mA
P_{D}	Power Dissipation in Still Air,SOIC Package \dagger TSSOP Packaget \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)		2.0	12.0	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (Referenced to GND)		GND	V_{CC}	V
$V_{\text {in }}$	Digital Input Voltage (Referenced to GND)		GND	V_{CC}	V
$\mathrm{V}_{10}{ }^{*}$	Static or Dynamic Voltage Across Switch		-	1.2	V
T_{A}	Operating Temperature, All Package Types		-55	+ 125	${ }^{\circ} \mathrm{C}$
t_{r}, t_{f}	Input Rise and Fall Time, ON/OFF Control Inputs (Figure 10)	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=12.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 600 \\ 500 \\ 400 \\ 250 \end{gathered}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
*For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Voltage ON/OFF Control Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	V
VIL	Maximum Low-Level Voltage ON/OFF Control Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	V
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current ON/OFF Control Inputs	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	12.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IO}}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{gathered} 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V C}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {on }}$	Maximum "ON" Resistance	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to GND } \\ & \left.\mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \text { (Figures } 1,2\right) \end{aligned}$	$\begin{gathered} \hline 2.0 \dagger \\ 3.0 \dagger \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} - \\ - \\ 120 \\ 70 \\ 70 \end{gathered}$	$\begin{gathered} - \\ - \\ 160 \\ 85 \\ 85 \end{gathered}$	$\begin{gathered} - \\ - \\ 200 \\ 100 \\ 100 \end{gathered}$	Ω
		$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{I H} \\ & \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { (Endpoints) } \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \text { (Figures 1, 2) } \end{aligned}$	$\begin{gathered} \hline 2.0 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} - \\ - \\ 70 \\ 50 \\ 50 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & 85 \\ & 60 \\ & 60 \end{aligned}$	$\begin{gathered} - \\ - \\ 120 \\ 80 \\ 80 \end{gathered}$	
$\Delta \mathrm{R}_{\text {on }}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} & V_{\text {in }}=V_{I H} \\ & V_{I S}=1 / 2\left(V_{C C}-G N D\right) \\ & I_{S} \leq 2.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.0 \\ 4.5 \\ 9.0 \\ 12.0 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & 30 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	Ω
$\mathrm{l}_{\text {off }}$	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { Switch Off (Figure 3) } \end{aligned}$	12.0	0.1	0.5	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {on }}$	Maximum On-Channel Leakage Current, Any One Channel	$\begin{array}{\|l} \hline \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ \text { (Figure 4) } \\ \hline \end{array}$	12.0	0.1	0.5	1.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
\dagger At supply voltage (V_{Cc}) approaching 3 V the analog switch-on resistance becomes extremely non-linear. Therefore, for low-voltage operation, it is recommended that these devices only be used to control digital signals.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, ON/OFF Control Inputs: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} \& \multirow[b]{2}{*}{Parameter} \& \multirow[b]{2}{*}{\[
\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}
\]} \& \multicolumn{3}{|c|}{Guaranteed Limit} \& \multirow[b]{2}{*}{Unit} \\
\hline \& \& \& \[
\begin{gathered}
-55 \text { to } \\
25^{\circ} \mathrm{C}
\end{gathered}
\] \& \(\leq 85^{\circ} \mathrm{C}\) \& \(\leq 125^{\circ} \mathrm{C}\) \& \\
\hline \[
\begin{aligned}
\& \mathrm{t}_{\mathrm{tPLH}}, \\
\& \mathrm{t}_{\text {PHL }}
\end{aligned}
\] \& Maximum Propagation Delay, Analog Input to Analog Output (Figures 8 and 9) \& \[
\begin{gathered}
\hline 2.0 \\
3.0 \\
4.5 \\
9.0 \\
12.0
\end{gathered}
\] \& \[
\begin{aligned}
\& 40 \\
\& 30 \\
\& 10 \\
\& 10 \\
\& 10
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 50 \\
\& 40 \\
\& 13 \\
\& 13 \\
\& 13
\end{aligned}
\] \& \[
\begin{aligned}
\& 60 \\
\& 50 \\
\& 15 \\
\& 15 \\
\& 15
\end{aligned}
\] \& ns \\
\hline \[
\begin{aligned}
\& \mathrm{t}_{\mathrm{PLLZ}}, \\
\& \mathrm{t}_{\mathrm{PH} Z}
\end{aligned}
\] \& Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 10 and 11) \& \[
\begin{gathered}
\hline 2.0 \\
3.0 \\
4.5 \\
9.0 \\
12.0
\end{gathered}
\] \& \[
\begin{aligned}
\& 80 \\
\& 60 \\
\& 30 \\
\& 25 \\
\& 25
\end{aligned}
\] \& \[
\begin{aligned}
\& 90 \\
\& 70 \\
\& 38 \\
\& 28 \\
\& 28
\end{aligned}
\] \& \[
\begin{aligned}
\& 110 \\
\& 80 \\
\& 45 \\
\& 30 \\
\& 30
\end{aligned}
\] \& ns \\
\hline \[
\begin{aligned}
\& \text { tpZL, } \\
\& \text { tpzH }^{\prime}
\end{aligned}
\] \& Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 10 and 1 1) \& \[
\begin{gathered}
\hline 2.0 \\
3.0 \\
4.5 \\
9.0 \\
12.0
\end{gathered}
\] \& \[
\begin{aligned}
\& 80 \\
\& 45 \\
\& 25 \\
\& 25 \\
\& 25 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 90 \\
\& 50 \\
\& 32 \\
\& 32 \\
\& 32 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 \\
\& 60 \\
\& 37 \\
\& 37 \\
\& 37
\end{aligned}
\] \& ns \\
\hline C \& \begin{tabular}{rr}
Maximum Capacitance \& ON/OFF Control Input \\
Control Input \(=\) GND \\
Analog I/O \\
Feedthrough
\end{tabular} \& - \& \[
\begin{aligned}
\& 10 \\
\& \hline \\
\& 35 \\
\& 1.0
\end{aligned}
\] \& 10

35

1.0 \& $$
\begin{array}{r}
10 \\
\hline \\
35 \\
1.0
\end{array}
$$ \& pF

\hline
\end{tabular}

		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Switch) (Figure 13)*	15	pF

*Used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2} \mathrm{f}+\mathrm{I}_{\mathrm{CC}} \mathrm{V}_{\mathrm{CC}}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	$\begin{gathered} \text { Limit }^{*} \\ 25^{\circ} \mathrm{C} \\ 54 / 74 \mathrm{HC} \end{gathered}$	Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 5)	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave Adjust $f_{\text {in }}$ Voltage to Obtain 0 dBm at V_{OS} Increase $f_{\text {in }}$ Frequency Until dB Meter Reads - 3 dB $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 150 \\ & 160 \\ & 160 \end{aligned}$	MHz
-	Off-Channel Feedthrough Isolation (Figure 6)	$\begin{array}{\|l} \begin{array}{l} \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ \text { Adjust } f_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{array} \end{array}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \\ \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{array}{r} \hline-50 \\ -50 \\ -50 \\ \hline-40 \\ -40 \\ -40 \end{array}$	dB
-	Feedthrough Noise, Control to Switch (Figure 7)	$\begin{array}{\|l\|} \hline V_{\text {in }} \leq 1 \mathrm{MHz} \text { Square Wave }\left(t_{r}=t_{f}=6 \mathrm{~ns}\right) \\ \text { Adjust } R_{L} \text { at Setup so that } I_{S}=0 \mathrm{~A} \\ \\ R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ \\ R_{L}=10 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF} \end{array}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 12.0 \\ \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{gathered} \hline 60 \\ 130 \\ 200 \\ \hline 30 \\ 65 \\ 100 \end{gathered}$	mV PP
-	Crosstalk Between Any Two Switches (Figure 12)	$\begin{aligned} & \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ & \text { Adjust } \mathrm{f}_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{gathered} 4.5 \\ 9.0 \\ 12.0 \\ \hline 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{array}{r} -70 \\ -70 \\ -70 \\ \hline-80 \\ -80 \\ -80 \end{array}$	dB
THD	Total Harmonic Distortion (Figure 14)		$\begin{gathered} 4.5 \\ 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.06 \\ & 0.04 \end{aligned}$	\%

*Guaranteed limits not tested. Determined by design and verified by qualification.

Figure 1a. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$

Figure 1b. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$

Figure 1c. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 1d. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=6.0 \mathrm{~V}$

Figure 1e. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$

Figure 1f. Typical On Resistance, $\mathrm{V}_{\mathrm{cc}}=12.0 \mathrm{~V}$

MC74HC4066A

Figure 2. On Resistance Test Set-Up

Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

Figure 4. Maximum On Channel Leakage Current, Test Set-Up

*Includes all probe and jig capacitance.
Figure 5. Maximum On-Channel Bandwidth Test Set-Up

Figure 7. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up

*Includes all probe and jig capacitance.
Figure 6. Off-Channel Feedthrough Isolation, Test Set-Up

Figure 8. Propagation Delays, Analog In to Analog Out

*Includes all probe and jig capacitance.
Figure 9. Propagation Delay Test Set-Up

*Includes all probe and jig capacitance.
Figure 11. Propagation Delay Test Set-Up

Figure 13. Power Dissipation Capacitance Test Set-Up

Figure 10. Propagation Delay, ON/OFF Control to Analog Out

*Includes all probe and jig capacitance.
Figure 12. Crosstalk Between Any Two Switches, Test Set-Up

*Includes all probe and jig capacitance.
Figure 14. Total Harmonic Distortion, Test Set-Up

Figure 15. Plot, Harmonic Distortion

APPLICATION INFORMATION

The ON/OFF Control pins should be at V_{CC} or GND logic levels, V_{CC} being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to V_{CC} or GND through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked-up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages V_{CC} and GND. The positive peak analog voltage should not exceed V_{CC}. Similarly, the negative peak analog voltage should not go below GND. In the example

Figure 16. 12 V Application
below, the difference between V_{CC} and GND is twelve volts. Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak-to-peak can be controlled.
When voltage transients above V_{CC} and/or below GND are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn-on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with Mosorbs (Mosorb ${ }^{\text {TM }}$ is an acronym for high current surge protectors). Mosorbs are fast turn-on devices ideally suited for precise DC protection with no inherent wear out mechanism.

Figure 17. Transient Suppressor Application

MC74HC4066A

Figure 18. LSTTL/NMOS to HCMOS Interface

Figure 19. TTL/NMOS-to-CMOS Level Converter Analog Signal Peak-to-Peak Greater than 5 V (Also see HC4316A)

Figure 20. 4-Input Multiplexer

Figure 21. Sample/Hold Amplifier

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE

1. COMMON CATHODE
2. COMMON ANODE
3. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE $\mathbf{2}$ OF 2 |

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSSOP-14 WB
CASE 948G
ISSUE C
DATE 17 FEB 2016

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC	0.252	BSC	
M	00°	8°	0°	8°

GENERIC MARKING DIAGRAM*

SOLDERING FOOTPRINT

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

onsemi and ONSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

