NLSF595

Serial (SPI) Tri-Color LED Driver

The NLSF595 is advanced CMOS shift register with open drain outputs fabricated with $0.6 \mu \mathrm{~m}$ silicon gate CMOS technology. This device is used in conjunction with a microcontroller, with only one dedicated line. All pins have Overvoltage Protection that allows voltages above V_{CC} up to 7.0 V to be present on the pins without damage or disruption of operation of the part, regardless of the operating voltage. This device may be used between 2.0 and 5.5 volts, the output driver level may be independent of supply voltage: $0-7.0$ volts.

Features

- Parallel Outputs are Open Drain Capable of Sinking > 12 mA
- Output Withstands up to +7.0 Regardless of V_{CC}
- Standard Serial (SPI) Interface, Data, Clock, Enable (Low)
- All Inputs CMOS Level Compatible
- Frees up I/O around a Microcontroller
- Only One Pin Dedicated to this Device (Latch Enable)
- Output Enable may be Permanently Pulled Low
- High Speed Clocking, Fmax > 25 MHz (Shift Clock)
- Eight Bits Parallel Output
- Double Buffered Outputs, so Register may Fill without Affecting Output
- STD CMOS Serial Output, may be used to Cascade more than One Device
- Each Part Controls Two Tri-Color LEDs
- Two Devices can Control 5 Tri-Color LEDs
- Low Leakage: $\mathrm{I}_{\mathrm{CC}}=2.0 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Latchup Performance Exceeds 100 mA
- QFN-16/TSSOP-16 Packages
- ESD Performance:
- Human Body Model; > 2000 V
- Machine Model; > 200 V
- Functionally Similar to the Popular 74VHC595
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

QFN-16
MN SUFFIX
CASE 485G
(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

NLSF595

Figure 1. Pin Assignment (TSSOP-16)

Figure 2. IEC Logic Symbol

Figure 3. Pin Assignment (QFN-16)

Figure 4. Expanded Logic Diagram

NLSF595

MAXIMUM RATINGS

Symbol	Parameter	Value	Units
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+7.0$	V
IIK	Input Diode Current	-20	mA
lok	Output Diode Current	± 50	mA
Iout	DC Output Current, per Pin	+50	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air	450	mW
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 1)	± 300	mA
$\theta_{\text {JA }}$	Thermal Resistance, Junction-to-Ambient	128	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Units
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	0	5.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	0	$\mathrm{V}_{\text {cc }}$	V
T_{A}	Operating Temperature Range, all Package Types	-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	0	$\begin{aligned} & 50 \\ & 15 \end{aligned}$	ns/V

FUNCTION TABLE

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Units
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$			$\begin{aligned} & \hline 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$		$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{gathered} \hline 0.59 \\ 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$		$\begin{gathered} 0.59 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} 0.59 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum High-Level Serial Output Only Output Voltage$V_{I N}=V_{I H} \text { or } V_{I L}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.9 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		$\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage$\mathrm{V}_{I N}=\mathrm{V}_{I H} \text { or } \mathrm{V}_{I L}$	$\mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \hline \mathrm{IOL}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & \hline 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
$\mathrm{V}_{\text {OL2 }}$	Maximum Low-Level Output Voltage with Max. Load $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.6 \end{aligned}$		$\begin{aligned} & \hline 1.1 \\ & 0.7 \end{aligned}$		$\begin{gathered} 1.25 \\ 0.8 \end{gathered}$	V
I_{N}	Maximum Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$	0 to 5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	5.5			4.0		40.0		40.0	$\mu \mathrm{A}$
loz	Three-State Output Off-State Current QA-QH	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	5.5			± 0.25		± 2.5		± 2.5	$\mu \mathrm{A}$
ILKg	Active (2) State Off Output Leakage Current QA-QH	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	5.5			± 0.25		± 2.5		± 2.5	$\mu \mathrm{A}$
IofF	Power Off Output Leakage All Outputs	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \text { or } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$	0			± 0.25		± 2.5		± 2.5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Units
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$		80	150		70		70		MHz
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$		135	185		115		115		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, SCK to SQH	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 8.8 \\ 11.3 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 18.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.2 \\ & 7.7 \end{aligned}$	$\begin{gathered} \hline 8.2 \\ 10.2 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.4 \\ 11.4 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.4 \\ 11.4 \end{gathered}$	
${ }_{\text {t }}$	Propagation Delay, SCLR to SQH	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 8.4 \\ 10.9 \end{gathered}$	$\begin{aligned} & \hline 12.8 \\ & 16.3 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 17 ? \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 13.7 \\ & 17.2 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.9 \\ & 7.4 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.1 \\ 11.1 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.1 \\ 11.1 \end{gathered}$	
tplz	Output Disable Time RCK to QA-QH Output Enable Time RCK to QA-QH	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{array}$		7.7 10.2 5.4 6.9		$\begin{gathered} \hline 11.9 \\ 15.4 \\ 7.4 \\ 9.4 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 13.5 \\ 17.0 \\ 8.5 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 17.0 \\ 8.5 \\ 10.5 \end{gathered}$	ns
tpzL	Output Disable Time RCK to QA-QH Output Enable Time RCK to QA-QH	$\begin{aligned} & V_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & V_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 7.7 \\ 10.2 \\ 5.4 \\ 6.9 \end{gathered}$	$\begin{aligned} & \hline 11.9 \\ & 15.4 \\ & 7.4 \\ & 9.4 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 17.0 \\ 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 17.0 \\ 8.5 \\ 10.5 \end{gathered}$	ns
${ }_{\text {tPZL }}$	Output Enable Time, OE to QA-QH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 17.0 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 4.8 \\ & 8.3 \end{aligned}$	$\begin{gathered} \hline 8.6 \\ 10.6 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 12.0 \end{aligned}$	
tplz	Output Disable Time, OE to QA-QH	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \hline \end{array}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12.1	15.7	1.0	16.2	1.0	16.2	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.6	10.3	1.0	11.0	1.0	11.0	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				4	10		10		10	pF
$\mathrm{Cout}^{\text {O }}$	Three-State Output Capacitance (Output in High-Impedance State), QA-QH				6			10		10	pF

		Typical @ 25 ${ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
C_{PD}	Power Dissipation Capacitance (Note 2)	87	pF

2. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	0.8	1.0	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-0.8	-1.0	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		3.5	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		1.5	V

NLSF595

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	v_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \text { Limit } \end{gathered}$	$\frac{T_{A}=-55 \text { to } 125^{\circ} \mathrm{C}}{\text { Limit }}$	Units
			Typ	Limit			
$\mathrm{t}_{\text {su }}$	Setup Time, SI to SCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{su}(\mathrm{H})}$	Setup Time, SCK to RCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	ns
$\left.\mathrm{t}_{\text {su(}} \mathrm{L}\right)$	Setup Time, SCLR to RCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	ns
$t_{\text {h }}$	Hold Time, SI to SCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns
$\mathrm{th}_{\text {(L) }}$	Hold Time, SCLR to RCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, SCLR to SCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	ns
t_{w}	Pulse Width, SCK or RCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{L})}$	Pulse Width, SCLR	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns

NLSF595

Figure 5. NLSF595 Shown Driving 5 3-Color LEDs

NLSF595

SWITCHING WAVEFORMS

Figure 6.

Figure 8.

Figure 10.

Figure 7.

Figure 9.

Figure 11.

TEST CIRCUITS

*Includes all probe and jig capacitance
Figure 12.

*Includes all probe and jig capacitance

Figure 13.

NLSF595

Figure 14. Timing Diagram

Figure 15. Input Equivalent Circuit

NLSF595

Figure 16. NLSF595 Example

NLSF595

ORDERING INFORMATION

Device Order Number	Device Nomenclature						Package

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
SCALE 2:1

SIDE VIEW

battam View

NDTES:

1. DIMENSIONING AND TQLERANCING PER ASME Y14.5M, 1994.
2. CINTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN 6 APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FRDM THE TERMINAL TIP.
4. CIPLANARITY APPLIES TD THE EXPISED PAD AS WELL AS. THE TERMINALS.

DETAIL B
CILTERTRUCTIONs

DETAIL A
alternate terminal CONSTRUCTIINS

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			0.30
D	3.00 BSC				
D2	1.65	1.75	1.85		
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*
${ }^{\circ} \mathrm{XXXXX}$
XXXXX
ALYW.
-
XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " \because ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

[^0]

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006
SCALE 2:1

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
Gor v	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^1]onsemi, OnSEMi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

