Operational Amplifiers, High Slew Rate, Low Voltage, Rail-to-Rail Output NCS2003/A, NCV2003, NCS20032, NCV20032, NCS20034, NCV20034

The NCS2003 family of op amps features high slew rate, low voltage operation with rail-to-rail output drive capability. The 1.8 V operation allows high performance operation in low voltage, low power applications. The fast slew rate and wide unity-gain bandwidth (5 MHz at 1.8 V) make these op amps suited for high speed applications. The low input offset voltage (4 mV max) allows the op amp to be used for current shunt monitoring. Additional features include no output phase reversal with overdriven inputs and ultra low input bias current of 1 pA .

The NCS2003 family is the ideal solution for a wide range of applications and products. The single channel NCS2003, dual channel NCS20032, and quad channel NCS20034 are available in a variety of compact and space-saving packages. The NCV prefix denotes that the device is AEC-Q100 Qualified and PPAP Capable.

Features

- Unity Gain Bandwidth: 7 MHz at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$
- Fast Slew Rate: $8 \mathrm{~V} / \mu \mathrm{s}$ rising, $12.5 \mathrm{~V} / \mu \mathrm{s}$ falling at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$
- Rail-to-Rail Output
- No Output Phase Reversal for Over-Driven Input Signals
- Low Offset Voltage: 0.5 mV typical
- Low Input Bias Current: 1 pA typical
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Current Shunt Monitor
- Signal Conditioning
- Active Filter
- Sensor Buffer

End Products

- Motor Control Drives
- Hard Drives
- Medical Devices
- White Goods and Air Conditioners

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

NCS2003/A, NCV2003, NCS20032, NCV20032, NCS20034, NCV20034

Quadruple Channel Configuration
NCS20034, NCV20034

Figure 1. Pin Connections
ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping ${ }^{\dagger}$
NCS2003SN2T1G	Single	No	AN3	SOT23-5 (Pb-Free)	3000 / Tape and Reel
NCS2003ASN2T1G		No	AN4	$\begin{aligned} & \hline \text { SOT23-5 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape and Reel
NCS2003XV53T2G		No	A3	SOT553-5 (Pb-Free)	4000 /Tape and Reel
NCV2003SN2T1G*		Yes	AN3	SOT23-5 (Pb-Free)	3000 / Tape and Reel
NCS20032DMR2G	Dual	No	2K32	Micro8 (Pb-Free)	4000 / Tape and Reel
NCS20032DR2G			20032	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape and Reel
NCS20032DTBR2G			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCV20032DMR2G*		Yes	2K32	Micro8 (Pb-Free)	4000 / Tape and Reel
NCV20032DR2G*			20032	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape and Reel
NCV20032DTBR2G*			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCS20034DR2G	Quad	No	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20034DR2G*		Yes	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated

Parameter	Symbol	Limit	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	V_{S}	7.0	V

INPUT AND OUTPUT PINS

Input Voltage (Note 1)	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to 7.0	
Input Current	I_{IN}	10	mA
Output Short Current (Note 2)	I_{O}	mA	

TEMPERATURE

Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$

ESD RATINGS (Note 3)

Human Body Model	NCx2003, A	HBM	3000	V
	NCx20032		2000	
	NCx20034		3000	
Machine Model	NCx2003, A	MM	200	
	NCx20032		V	
	NCx20034		150	
Charged Device Model	NCx2003, A	CDM	1000	V
	NCx2003x		2000	

OTHER PARAMETERS

Moisture Sensitivity Level (Note 5)	MSL	Level 1	100
Latch-up Current (Note 4)	$\mathrm{I}_{\text {LU }}$	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Neither input should exceed the range of $\mathrm{V}_{\mathrm{SS}}-300 \mathrm{mV}$ to 7.0 V . This device contains internal protection diodes between the input pins and V_{DD}. When V_{IN} exceeds V_{DD}, the input current should be limited to the specified value.
2. Indefinite duration; however, maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.
3. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 and JESD22-A114
ESD Machine Model tested per AEC-Q100-003 and JESD22-A115
ESD Charged Device Model tested per AEC-Q100-011 and ANSI/ESD S5.3.1-2009
4. Latch-up current tested per JEDEC Standard JESD78.
5. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A.

THERMAL INFORMATION

Thermal Metric	Symbol	Package	Single Layer Board (Note 6)	Multi Layer Board (Note 7)	Unit
Junction to Ambient Thermal Resistance	$\theta_{\text {JA }}$	SOT23-5/TSOP-5	408	355	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOT553-5	428	406	
		Micro8/MSOP8	235	163	
		SOIC-8	240	179	
		TSSOP-8	300	238	
		SOIC-14	167	123	

6. Values based on a 1 S standard PCB according to JEDEC51-3 with 1.0 oz copper and a $300 \mathrm{~mm}^{2}$ copper area
7. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a $100 \mathrm{~mm}^{2}$ copper area

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$)	V_{S}	1.7	5.5	V
Specified Operating Range NCS2003, A NCV2003, NCx20032, NCx20034	$\mathrm{T}_{\text {A }}$	$\begin{aligned} & \hline-40 \\ & -40 \end{aligned}$	$\begin{gathered} +85 \\ +125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Input Common Mode Range	V_{CM}	V_{SS}	$\mathrm{V}_{\mathrm{DD}}-0.6$	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathbf{V}_{\mathbf{S}}=+1.8 \mathrm{~V}$
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

INPUT CHARACTERISTICS

Input Offset Voltage	V_{OS}	NCS2003A		0.5	3.0	mV
		NCx2003, NCx20032, NCx20034		0.5	4.0	mV
					5.0	mV
Offset Voltage Drift	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$			2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		NCS2003A (Note 8)			6.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{IIB}^{\text {I }}$			1		pA
Input Offset Current	los			1		pA
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	$\mathrm{R}_{\text {IN }}$			1		T Ω
Input Capacitance	$\mathrm{C}_{\text {IN }}$			1.2		pF
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\mathrm{DD}}-0.6 \mathrm{~V}$	70	80		dB
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}+0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-0.6 \mathrm{~V}$	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	Avol	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		80	92		dB
				75			
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			92		
				70			
Output Current Capability (Note 8)	Isc	Sourcing		5	8		mA
		Sinking		10	14		
Output Voltage High	V_{OH}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		1.75	1.798		V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		1.7	1.78		
Output Voltage Low	VoL	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	NCx2003, A		7	50	mV
			NCx2003x		7	100	
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			20	100	

NOISE PERFORMANCE

| Voltage Noise Density | e_{N} | $\mathrm{f}=1 \mathrm{kHz}$ | | 20 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Noise Density | i_{N} | $\mathrm{f}=1 \mathrm{kHz}$ | | 0.1 | $\mathrm{pA} \sqrt{\mathrm{Hz}}$ |

DYNAMIC PERORMANCE

Gain Bandwidth Product	GBWP			5	MHz
Slew Rate at Unity Gain	SR	Rising Edge, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{V}=+1$		6	V/us
		Falling Edge, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1$		9	
Phase Margin	ψ_{m}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		53	-
Gain Margin	A_{m}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	NCx2003, A	12	dB
			NCx2003x	8	
Settling Time	ts	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=1 \mathrm{Vpp}, \\ \text { Gain }=1, C_{\mathrm{L}}=20 \mathrm{pF} \end{gathered}$	Settling time to 0.1\%	1.8	$\mu \mathrm{s}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: $\mathbf{V}_{\mathbf{S}}=+1.8 \mathrm{~V}$ (continued)
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
DYNAMIC PERORMANCE						
Total Harmonics Distortion + Noise	THD+N	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{f}=1 \mathrm{kHz}$		0.005		\%
		$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{f}=10 \mathrm{kHz}$		0.025		

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	NCx2003		72	80		dB
				65			
		NCx20032, NCx20034		80	100		
Quiescent Current	I_{DD}	No load, per channel	NCx2003, A		230	560	$\mu \mathrm{A}$
						1000	
			NCx20032,		275	375	
						575	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathbf{S}}=+5.0 \mathrm{~V}$
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Input Offset Voltage	V_{OS}	NCS2003A		0.5	3.0	mV
		NCx2003		0.5	4.0	mV
		NCx20032, NCx20034			5.0	mV
Offset Voltage Drift	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$			2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		NCS2003A (Note 9)			6.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB			1		pA
Input Offset Current	los			1		pA
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	$\mathrm{R}_{\text {IN }}$			1		T Ω
Input Capacitance	$\mathrm{C}_{\text {IN }}$			1.2		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: $\mathbf{V}_{\mathbf{S}}=+5.0 \mathrm{~V}$ (continued)
At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
INPUT CHARACTERISTICS							
Common Mode Rejection Ratio	CMRR	NCx2003, A	$\left\lvert\, \begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}- \\ 0.6 \mathrm{~V} \end{gathered}\right.$	65	90		dB
			$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}+0.2 \mathrm{~V} \\ \text { to } \mathrm{V}_{\mathrm{DD}}-0.6 \mathrm{~V} \end{gathered}$	63			
		NCx20032, NCx20034	$\left\lvert\, \begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}- \\ 0.6 \mathrm{~V} \end{gathered}\right.$	70	90		
			$\begin{gathered} \mathrm{V}_{I N}=\mathrm{V}_{S S}+0.2 \mathrm{~V} \\ \text { to } \mathrm{V}_{\mathrm{DD}}-0.6 \mathrm{~V} \end{gathered}$	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	AvoL	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		86	92		dB
				78			
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		83	92		
				78			
Output Current Capability (Note 9)	Isc	Sourcing		40	76		mA
		Sinking		50	96		
Output Voltage High	V_{OH}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		4.95	4.99		V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		4.9	4.97		
Output Voltage Low	VoL	$R_{L}=10 \mathrm{k} \Omega$	NCx2003, A		8	50	mV
			NCx2003x		8	100	
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			24	100	

NOISE PERFORMANCE

Voltage Noise Density	e_{N}	$\mathrm{f}=1 \mathrm{kHz}$	20	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Current Noise Density	i_{N}	$\mathrm{f}=1 \mathrm{kHz}$	0.1	$\mathrm{pA} \sqrt{ } \mathrm{Hz}$

DYNAMIC PERORMANCE

Gain Bandwidth Product	GBWP			7	MHz
Slew Rate at Unity Gain	SR	Rising Edge, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{AV}=+1$		8	V/us
		Falling Edge, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{Av}=+1$		12.5	
Phase Margin	ψ_{m}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	NCx2003, A	64	。
			NCx2003x	56	
Gain Margin	A_{m}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		9	dB
Settling Time	ts	$\begin{gathered} V_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{pp}}, \\ \text { Gain }=1, C_{L}=20 \mathrm{pF} \end{gathered}$	Settling time to 0.1\%	0.6	$\mu \mathrm{s}$
Total Harmonics Distortion + Noise	THD+N	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{f}=1 \mathrm{kHz}$		0.002	\%
		$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{f}=10 \mathrm{kHz}$		0.01	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: $\mathbf{V}_{\mathbf{S}}=+5.0 \mathrm{~V}$ (continued)
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	NCx2003, A		72	80		dB
				65			
		NCx20032, NCx20034		80	100		
Quiescent Current	IDD	No load, per channel	NCx2003, A		300	660	$\mu \mathrm{A}$
						1000	
			$\begin{aligned} & \text { NCx20032, } \\ & \text { NCx20034 } \end{aligned}$		325	450	
						675	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
9. Guaranteed by design and/or characterization.

TYPICAL CHARACTERISTICS

Figure 2. Quiescent Supply Current vs. Supply Voltage

Figure 4. Input Offset Current vs. $\mathbf{V}_{\mathbf{C M}}$

Figure 6. Low Level Output Voltage vs. Output Current @ $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 3. Quiescent Supply Current vs. Temperature

Figure 5. Low Level Output Voltage vs. Output Current @ $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$

Figure 7. High Level Output Voltage vs. Output Current @ $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$

TYPICAL CHARACTERISTICS (Continued)

Figure 8. High Level Output Voltage vs. Output Current @ V $=5$ V

Figure 9. PSRR vs. Frequency

Figure 10. CMRR vs. Frequency

Figure 11. Open Loop Gain and Phase vs.
Frequency @ $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$

Figure 12. Open Loop Gain and Phase vs. Frequency @ $\mathrm{V}_{\mathbf{S}}=5 \mathrm{~V}$

Figure 13. Phase Margin vs. Capacitive Load

TYPICAL CHARACTERISTICS (Continued)

Figure 14. Inverting Small Signal Transient Response

Figure 16. Inverting Large Signal Transient Response

Figure 18. Non-Inverting Large Signal Transient Response

Figure 15. Non-Inverting Small Signal Transient Response

Figure 17. Non-Inverting Large Signal Transient Response

Figure 19. THD+N vs. Output Voltage

NCS2003/A, NCV2003, NCS20032, NCV20032, NCS20034, NCV20034
TYPICAL CHARACTERISTICS (Continued)

Figure 20. THD+N vs. Frequency

Figure 22. Noise Density vs. Frequency

Figure 21. Input Voltage Noise vs. Frequency

Figure 23. Falling Edge Slew Rate @ Vs = 5 V

Figure 24. Rising Edge Slew Rate @ Vs = 5 V

Figure 25. Channel Separation

DATE 20 MAR 2013

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
c	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.15	1.20	1.25	0.045	0.047	0.049	
e	0.50 BSC				0.020 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
$\mathbf{H}_{\mathbf{E}}$	1.55	1.60	1.65	0.061	0.063	0.065	

RECOMMENDED

SOLDERING FOOTPRINT*

GENERIC MARKING DIAGRAM*

XX = Specific Device Code M = Date Code

- \quad Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR 1
5. COLLECTOR 2/BASE 1

STYLE 2
PIN 1. CATHODE
2. COMMON ANODE
2. COMMON A
3. CATHODE 2
4. CATHODE 3

STYLE 7:
PIN 1. BASE
2. EMITTER
2. EMITT
3. BASE
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3:
PIN 1. ANODE 1
2. N / C
3. ANODE 2
4. CATHODE
5. CATHODE 1

STYLE 8:

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN 1
3. SOURCE 1
4. GATE
5. GATE 2

STYLE 9

PIN 1. ANODE
2. CATHODE
3. ANODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:
PIN 1. ANODE
2. EMITTER
3. BASE
4. COLLECTOR 5. CATHODE

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		
NEW STANDARD:			PAGE 1 OF 2

ON Semiconductor		DOCUMENT NUMBER: 98AON11127D	
		PAGE 2 OF 2	
ISSUE	REVISION		DATE
A	ADDED STYLES 3-9. REQ. BY D. BARLOW		11 NOV 2003
B	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO		27 MAY 2005
C	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.		20 MAR 2013

[^0] arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
NOTES

1. DIMENSIONING AND TOLERANCING PER ASME

Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

DIM	MILLIMETERS	
	MIN	MAX
\mathbf{A}	2.85	3.15
\mathbf{B}	1.35	1.65
\mathbf{C}	0.90	1.10
\mathbf{D}	0.25	0.50
\mathbf{G}	0.95	BSC
\mathbf{H}	0.01	0.10
\mathbf{J}	0.10	0.26
\mathbf{K}	0.20	0.60
\mathbf{M}	0	10°
\mathbf{S}	2.50	3.00

GENERIC MARKING DIAGRAM*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
. P-DRAIN
7. N -DRAIN
8. N-DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
N 1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	- PAGE 2 OF2

onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
DETAIL A

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	
BSC				
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE

1. COMMON CATHODE
2. COMMON ANODE
3. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE $\mathbf{2}$ OF 2 |

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MILD FLASH, PRDTRUSIUNS, $G R$ GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRZTRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE TI THE LIWEST PDINT IN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	---	--	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	
L	0.40	5.05	

[^2]
STYLE 3:

STYLE 1:	STYLE 2.
PIN 1. SOURCE	PIN 1. SOURCE 1
2. SOURCE	2. GATE 1
3. SOURCE	3. SOURCE 2
4. GATE	4. GATE 2
5. DRAIN	5. DRAIN 2
6. DRAIN	6. DRAIN 2
7. DRAIN	7. DRAIN 1
8. DRAIN	8. DRAIN 1

PIN 1. N-SOURCE
2. N-GATE 3. P-SOURCE
4. P-GATE
4. P-GATE
5. P-DRAIN
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot """, may or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED $0.25(0.010)$ PROTRUS
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	4.30	4.50	0.169	0.177		
C	---	1.10	---	0.043		
D	0.05	0.15	0.002	0.006		
F	0.50	0.70	0.020	0.028		
G	0.65		BSC	0.026 BSC		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007			
K1	0.19	0.25	0.007	0.010		
L	6.40		BSC	0.252 BSC		
M	0	0°	8°	0°		8°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week

- $\quad=$ Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " - ", may or may not be present.

DOCUMENT NUMBER:	98AONO0697D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		

[^3] to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability

[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^2]: Solderrng and
 SLLDERRM/D.

[^3]: ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice

