DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4027B
 flip-flops
 Dual JK flip-flop

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4027B is a dual JK flip-flop which is edge-triggered and features independent set direct $\left(S_{D}\right)$, clear direct $\left(C_{D}\right)$, clock (CP) inputs and outputs (O, $\overline{\mathrm{O}}$). Data is accepted when CP is LOW, and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_{D}) and set-direct $\left(\mathrm{S}_{\mathrm{D}}\right)$ are independent and override the J, K, and CP inputs. The outputs are buffered for best system performance.
Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

FUNCTION TABLES

INPUTS					OUTPUTS	
$\mathbf{S}_{\boldsymbol{D}}$	$\mathbf{C}_{\boldsymbol{D}}$	$\mathbf{C P}$	\mathbf{J}	\mathbf{K}	\mathbf{O}	$\overline{\mathbf{O}}$
H	L	X	X	X	H	L
L	H	X	X	X	L	H
H	H	X	X	X	H	H

INPUTS					OUTPUTS	
$\mathbf{S}_{\mathbf{D}}$	$\mathbf{C}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{J}	\mathbf{K}	$\mathbf{O}_{\mathbf{n}+\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{n}+\mathbf{1}}$
L	L	\digamma	L	L	no change	
L	L	\digamma	H	L	H	L
L	L	\digamma	L	H	L	H
L	L	\digamma	H	H	$\overline{\mathrm{O}}_{\mathrm{n}}$	O_{n}

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\int=$ positive-going transition
$\mathrm{O}_{\mathrm{n}+1}=$ state after clock positive transition

PINNING

J,K synchronous inputs
CP clock input (L to H edge-triggered)
$S_{D} \quad$ asynchronous set-direct input (active HIGH)
C_{D} asynchronous clear-direct input (active HIGH)
O true output
$\overline{\mathrm{O}}$ complement output

HEF4027BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4027BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4027BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category FLIP-FLOPS
See Family Specifications

Fig. 3 Logic diagram (one flip-flop).

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN. TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}, \overline{\mathrm{O}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 105 \\ 40 \\ 30 \end{array}$	210 ns 80 ns 60 ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	85 35 30	$\begin{array}{r} 170 \mathrm{~ns} \\ 70 \mathrm{~ns} \\ 60 \mathrm{~ns} \end{array}$	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{S}_{\mathrm{D}} \rightarrow \mathrm{O}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	70 30 25	$\begin{array}{r} 140 \mathrm{~ns} \\ 60 \mathrm{~ns} \\ 50 \mathrm{~ns} \end{array}$	$\begin{aligned} & 43 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$C_{D} \rightarrow 0$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 120 \\ 45 \\ 35 \\ \hline \end{array}$	240 ns 90 ns 70 ns	$\begin{aligned} & 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 33 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{S}_{\mathrm{D}} \rightarrow \overline{\mathrm{O}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 140 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} \hline 280 \mathrm{~ns} \\ 110 \mathrm{~ns} \\ 80 \mathrm{~ns} \end{array}$	$\begin{array}{r} \hline 113 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$

Dual JK flip-flop

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
$\mathrm{C}_{\mathrm{D}} \rightarrow \overline{\mathrm{O}}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$		$\begin{aligned} & 75 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 150 \mathrm{~ns} \\ 70 \mathrm{~ns} \\ 50 \mathrm{~ns} \end{array}$	$\begin{aligned} & 48 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{array}{r} 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{array}{r} 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
Set-up time $\mathrm{J}, \mathrm{~K} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 25 \\ 10 \\ 5 \end{array}$	ns ns ns	see also waveforms Figs 4 and 5
Hold time $\mathrm{J}, \mathrm{~K} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 25 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 5 \end{aligned}$	ns ns ns	
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$	$\begin{aligned} & \hline 80 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \\ & 12 \end{aligned}$	ns ns ns	
Minimum S_{D}, C_{D} pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WSDH, }}$ $t_{\text {WCDH }}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	
Recovery time for S_{D}, C_{D}	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{RSD}}$, $t_{R C D}$	$\begin{aligned} & 20 \\ & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} \hline-15 \\ -10 \\ -5 \\ \hline \end{array}$	ns ns ns	
Maximum clock pulse frequency $\mathrm{J}=\mathrm{K}=\mathrm{HIGH}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 4 \\ 12 \\ 15 \end{array}$	$\begin{array}{r} 8 \\ 25 \\ 30 \end{array}$	$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	see also waveforms Fig. 4

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 900 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 4500 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 13200 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Dual JK flip-flop

Fig. 4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are shown as positive values but may be specified as negative values.

Fig. 5 Waveforms showing recovery times for S_{D} and C_{D}; minimum S_{D} and C_{D} pulse widths.

APPLICATION INFORMATION

Some examples of applications for the HEF4027B are:

- Registers
- Counters
- Control circuits

