Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40373B MSI
 Octal transparent latch with 3-state outputs

Product specification
File under Integrated Circuits, IC04

PHILIPS

Octal transparent latch with 3-state outputs

DESCRIPTION

The HEF40373B is an 8-bit transparent latch with 3-state buffered outputs. The output stages have high current output capability suitable for driving highly capacitive loads. The latch outputs follow the data inputs when the latch enable (E) is HIGH. When E is LOW, the data that meets the set-up times is latched. The 3-state outputs are controlled by the output enable input $\overline{\mathrm{EO}}$. A HIGH on

Fig. 1 Functional diagram.
$\overline{\mathrm{EO}}$ causes the outputs to assume a high impedance OFF-state. The device features hysteresis on the E input to improve noise rejection.
Schmitt-trigger action in the E input makes the circuit highly tolerant to slower input rise and fall times.

The HEF40373B is pin and functionally compatible with the TTL '373' device.
Supply voltage range: 3 to 15 V .

Fig. 2 Pinning diagram.

PINNING

D_{0} to D_{7}	data inputs
E	latch enable input $\overline{\mathrm{EO}}$
O_{0} to O_{7}	output enable input (active LOW)
3-state buffered outputs	

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Fig. 4 Logic diagram (one latch).

FUNCTION TABLE

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS $\mathbf{O}_{\mathbf{0}}$ TO O O $_{\mathbf{7}}$
	$\overline{\text { EO }}$	E	$\mathbf{D}_{\mathbf{n}}$		L
enable \& read register					
	L	H	H	H	
latch register \& disable outputs	L	H	H	L	L
	L	L	I	H	H
	L	L	h	L	Z
	H	L	I	H	Z

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{h}=$ HIGH state (one set-up time prior to the HIGH-to-LOW enable transition)
L = LOW state (the less positive voltage)
I = LOW state (one set-up time prior to the HIGH-to-LOw enable transition)
$Z=$ high impedance OFF-state

Octal transparent latch with 3-state outputs

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
See Family Specifications, except for:
D.C. current into any input
D.C. source or sink current into any output

$\pm I_{1}$	max.	10 mA
$\pm \mathrm{l}_{\mathrm{O}}$	max.	25 mA
$\pm \mathrm{I}$	max.	100 mA

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Fig. 5 Typical output source current characteristic.

(1) P-channel MOS transistor conducting.
(2) P-channel MOS transistor and bipolar $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor conducting.

Fig. 6 Schematic diagram of output stage.

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 3325 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D}{ }^{2} \\ 14200 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \\ 37425 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) C_{L} = load capacitance (pF) $\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Fig. 7 Output transition times as a function of the load capacitance. .

