ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

Philips Semiconductors

Product specification

Octal transparent latch with 3-state outputs

HEF40373B MSI

DESCRIPTION

The HEF40373B is an 8-bit transparent latch with 3-state buffered outputs. The output stages have high current output capability suitable for driving highly capacitive loads. The latch outputs follow the data inputs when the latch enable (E) is HIGH. When E is LOW, the data that meets the set-up times is latched. The 3-state outputs are controlled by the output enable input \overline{EO} . A HIGH on

EO causes the outputs to assume a high impedance OFF-state. The device features hysteresis on the E input to improve noise rejection.

Schmitt-trigger action in the E input makes the circuit highly tolerant to slower input rise and fall times.

The HEF40373B is pin and functionally compatible with the TTL '373' device.

Supply voltage range: 3 to 15 V.

PINNING

D ₀ to D ₇	data inputs
Е	latch enable input
EO	output enable input (active LOW)
O_0 to O_7	3-state buffered outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF40373BP(N):	20-lead DIL; plastic				
	(SOT146-1)				
HEF40373BD(F):	20-lead DIL; ceramic (cerdip)				
	(SOT152)				
HEF40373BT(D):	20-lead SO; plastic				
	(SOT163-1)				
(): Package Designator North America					

Downloaded from Arrow.com.

HEF40373B MSI

T

HEF40373B MSI

FUNCTION TABLE

		INPUTS	INTERNAL	OUTPUTS		
OFERATING MODES	EO	E	D _n	REGISTER	О ₀ ТО О ₇	
onable 8 read register	L	Н	L	L	L	
	L	н	н	Н	Н	
latah ^e road register	L	L	I	L	L	
	L	L	h	Н	Н	
latab ragistar 8 diaabla autouta	н	L	I	L	Z	
	Н	L	h	Н	Z	

Notes

1. H = HIGH state (the more positive voltage)

h = HIGH state (one set-up time prior to the HIGH-to-LOW enable transition)

L = LOW state (the less positive voltage)

I = LOW state (one set-up time prior to the HIGH-to-LOw enable transition)

Z = high impedance OFF-state

Downloaded from Arrow.com.

HEF40373B MSI

RATINGS

Limiting values in accordance with the Absolute Maximum System (I See Family Specifications, except for:	EC 134)		
D.C. current into any input	$\pm I_{l}$	max.	10 mA
D.C. source or sink current into any output	$\pm I_{O}$	max.	25 mA
D.C. current into the supply terminals	±Ι	max.	100 mA

DC CHARACTERISTICS

 $V_{SS} = 0 V$

	V _{DD}	V _{OH}	V _{OL}	V _{OL}	T _{amb} (°C)						
	V	V	V	STMBOL	-40		+ 25		+ 85		
					MIN.	TYP.	MIN.	TYP.	MIN.	TYP.	
Output current	5	4,6			0,75		0,6	1,2	0,45		mA
HIGH	10	9,5		–I _{OH}	1,85		1,5	3,0	1,1		mA
	15	13,5			14,5		15	50	15,5		mA
Output current	5	3,6			9,3		10	24	10,7		mA
HIGH	10	8,4		–I _{OH}	14,4		15	46	15,0		mA
	15	13,2			19,5		20	62	19,8		mA
Output current	5		0,4		2,9		2,3	5,4	1,75		mA
LOW	10		0,5	I _{OL}	9,5		7,6	17	5,50		mA
	15		1,5		30,0		25	45	19,0		mA
Hysteresis	5							220			mV
voltage at	10			V _H				250			mV
enable input (E)	15							320			mV

- (2) P-channel MOS transistor and bipolar n-p-n transistor conducting.
 - Fig.6 Schematic diagram of output stage.

January 1995

HEF40373B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$E \rightarrow O_n$	5			150	300	ns	138 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		60	120	ns	59 ns + (0,01 ns/pF) C _L
	15			40	80	ns	36 ns + (0,07 ns/pF) C _L
$E \rightarrow O_n$	5			125	250	ns	122 ns + (0,06 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	48 ns + (0,03 ns/pF) C _L
	15			40	80	ns	39 ns + (0,02 ns/pF) C _L
Output transition	5			40	80	ns	
times	10	t _{THL}		20	40	ns	
HIGH to LOW	15			15	30	ns	- : -
	5			30	60	ns	see Fig.7
LOW to HIGH	10	t _{TLH}		20	40	ns	
	15			15	30	ns	
3-state propagation delays							
Output disable times							
$\overline{EO} \rightarrow O_n$	5			65	130	ns	
HIGH	10	t _{PHZ}		30	60	ns	
	15			25	50	ns	
	5			75	150	ns	
LOW	10	t _{PLZ}		40	80	ns	
	15			30	60	ns	
Output enable times							
$\overline{EO} \rightarrow O_n$	5			65	130	ns	
HIGH	10	t _{PZH}		30	60	ns	
	15			25	50	ns	
	5			85	170	ns	
LOW	10	t _{PZL}		35	70	ns	
	15			25	50	ns	
Set-up time	5		15	7		ns	
$D_n \rightarrow E$	10	t _{su}	10	5		ns	
	15		10	5		ns	
Hold time	5		25	15		ns	
$D_n \rightarrow E$	10	t _{hold}	15	4		ns	
	15		10	3		ns	
Minimum latch enable	5		60	30		ns	
pulse width LOW	10	t _{WEL}	30	15		ns	
	15		20	10		ns	

January 1995

HEF40373B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	3 325 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	14 200 f _i + Σ (f _o C _L) $ imes$ V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	37 425 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C_L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

Downloaded from Arrow.com.