

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

December 2007

74ABT245 Octal Bi-Directional Transceiver with 3-STATE Outputs

Features

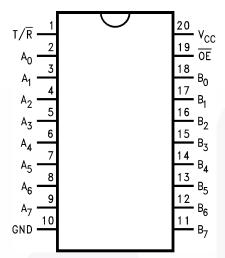
- Bidirectional non-inverting buffers
- A and B output sink capability of 64mA, source capability of 32mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50pF and 250pF
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High-impedance, glitch-free bus loading during entire power up and power down cycle
- Nondestructive, hot-insertion capability
- Disable time is less than enable time to avoid bus contention

General Description

The ABT245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for busoriented applications. Current sinking capability is 64 mA on both the A and B ports. The Transmit/Receive (T/\overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A Ports to B Ports; Receive (active LOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

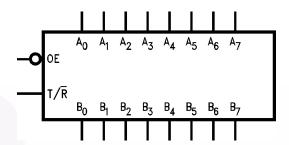
Ordering Information

Order Number	Package Number	Package Description
74ABT245CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT245CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT245CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT245CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

©1991 Fairchild Semiconductor Corporation 74ABT245 Rev. 1.5.0

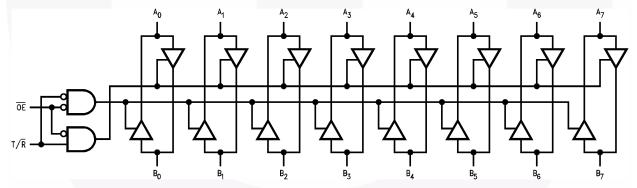

Connection Diagram

Pin Descriptions

Pin Names Description					
Output Enable Input (Active LOW					
T/R	Transmit/Receive Input				
A ₀ -A ₇ Side A Inputs or 3-STATE Output					
B ₀ –B ₇ Side B Inputs or 3-STATE Outputs					

Logic Symbol

Truth Table


Inp	outs	
OE T/R		Output
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	HIGH Z State

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
T _{STG}	Storage Temperature	−65°C to +150°C
T _A	Ambient Temperature Under Bias	-55°C to +125°C
TJ	Junction Temperature Under Bias	−55°C to +150°C
V _{CC}	V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
V _{IN}	Input Voltage ⁽¹⁾	-0.5V to +7.0V
I _{IN}	Input Current ⁽¹⁾	-30mA to +5.0mA
Vo	Voltage Applied to Any Output	
	Disabled or Power-off State	-0.5V to 5.5V
	HIGH State	–0.5V to V _{CC}
	Current Applied to Output in LOW State	twice the rated I _{OL} (mA)
	DC Latchup Source Current	-500mA
	Over Voltage Latchup (I/O)	10V

Note:

1. Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
T _A	Free Air Ambient Temperature	-40°C to +85°C
V _{CC}	Supply Voltage	+4.5V to +5.5V
ΔV / Δt	Minimum Input Edge Rate	
	Data Input	50mV/ns
	Enable Input	20mV/ns

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input HIGH Voltage			Recognized HIGH Signal	2.0			V
V _{IL}	Input LOW	Voltage		Recognized LOW Signal			0.8	V
V _{CD}	Input Clamp	Diode Voltage	Min.	$I_{IN} = -18 \text{ mA } (\overline{OE}, T/\overline{R})$			-1.2	V
V _{OH}	Output HIG	H Voltage	Min.	$I_{OH} = -3 \text{ mA } (A_n, B_n)$	2.5			V
			Min.	$I_{OH} = -32 \text{ mA } (A_n, B_n)$	2.0			
V _{OL}	Output LOV	V Voltage	Min.	$I_{OL} = 64 \text{ mA } (A_n, B_n)$			0.55	V
I _{IH}	Input HIGH	Current	Max.	$V_{IN} = 2.7V (\overline{OE}, T/\overline{R})$			1	μΑ
				$V_{IN} = V_{CC} (\overline{OE}, T/\overline{R})$			1	
I _{BVI}	Input HIGH Test	Current Breakdown	Max.	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$			7	μA
I _{BVIT}	Input HIGH Test (I/O)	Current Breakdown	Max.	$V_{IN} = 5.5V (A_n, B_n)$			100	μA
I _{IL}	Input LOW	Current	Max.	$V_{IN} = 0.5V (\overline{OE}, T/\overline{R})$			-1	μΑ
				$V_{IN} = 0.0V (\overline{OE}, T/\overline{R})$			-1	1
V_{ID}	Input Leakage Test		0.0	$I_{ID} = 1.9 \mu A (\overline{OE}, T/\overline{R}),$ All Other Pins Grounded	4.75			V
I _{IH} + I _{OZH}	Output Leak	kage Current	0-5.5V	$\frac{V_{OUT} = 2.7V (A_n, B_n)}{\overline{OE} = 2.0V}$			10	μA
I _{IL} + I _{OZL}	Output Leak	kage Current	0-5.5V	$V_{OUT} = 0.5V (A_n, B_n),$ $\overline{OE} = 2.0V$			-10	μA
I _{os}	Output Shor	rt-Circuit Current	Max.	$V_{OUT} = 0.0V (A_n, B_n)$	-100		-275	mA
I _{CEX}	Output HIG	H Leakage Current	Max.	$V_{OUT} = V_{CC} (A_n, B_n)$			50	μΑ
I _{ZZ}	Bus Drainag	ge Test	0.0	V _{OUT} = 5.5V (A _n , B _n), All Others GND			100	μA
I _{CCH}	Power Supp	oly Current	Max.	All Outputs HIGH			50	μΑ
I _{CCL}	Power Supp	oly Current	Max.	All Outputs LOW			30	mA
I _{CCZ}	Power Supp	oly Current	Max.	$\overline{OE} = V_{CC}$, $T/\overline{R} = GND$ or V_{CC} , All Other GND or V_{CC}			50	μA
I _{CCT}	Additional	Outputs Enabled	Max.	$V_{I} = V_{CC} - 2.1V$			2.5	mA
	I _{CC} /Input	Outputs 3-STATE		\overline{OE} , T/ \overline{R} V _I = V _{CC} - 2.1V			2.5	mA
		Outputs 3-STATE		Data Input $V_I = V_{CC} - 2.1V$, All Others at V_{CC} or GND.			50	μA
I _{CCD}	Dynamic I _{CC} No Load		Max.	Outputs Open, \overline{OE} = GND, T/ \overline{R} = GND or V _{CC} , One Bit Toggling, 50% Duty Cycle			0.1	mA/ MHz

DC Electrical Characteristics

SOIC package.

Symbol	Parameter	V _{CC}	Conditions $C_L = 50 \text{ pF},$ $R_I = 500\Omega$	Min.	Тур.	Max.	Units
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	$T_A = 25^{\circ}C^{(2)}$		0.7	1.0	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	$T_A = 25^{\circ}C^{(2)}$	-1.3	-1.0		V
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	5.0	$T_A = 25^{\circ}C^{(4)}$	2.7	3.1		V
V _{IHD}	V _{IHD} Minimum HIGH Level Dynamic Input Voltage		$T_A = 25^{\circ}C^{(3)}$	2.0	1.7		V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	$T_A = 25^{\circ}C^{(3)}$		0.9	0.6	V

Notes:

- 2. Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.
- 3. Max number of data inputs (n) switching. n-1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) . Guaranteed, but not tested.
- 4. Max number of outputs defined as (n). n 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

SOIC and SSOP package.

		T _A = +25°C, V _{CC} = +5V, C _L = 50pF		$T_A = -55^{\circ}\text{C}$ to +125°C, $V_{CC} = 4.5\text{V}$ to 5.5V, $C_L = 50\text{pF}$		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C},$ $V_{CC} = 4.5\text{V to } 5.5\text{V},$ $C_L = 50\text{pF}$			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay,	1.0	2.1	3.6	1.0	4.8	1.0	3.6	ns
t _{PHL}	Data to Outputs	1.0	2.4	3.6	1.0	4.8	1.0	3.6	
t _{PZH}	Output Enable Time	1.5	3.2	6.0	1.0	6.7	1.5	6.0	ns
t _{PZL}		1.5	3.7	6.0	2.0	7.5	1.5	6.0	
t _{PHZ}	Output Disable Time	1.0	3.6	6.1	1.7	7.4	1.0	6.1	ns
t _{PLZ}		1.0	3.3	5.6	1.7	6.5	1.0	5.6	

Extended AC Electrical Characteristics

SOIC package.

		$T_A = -40$ °C to +85°C, $V_{CC} = 4.5$ V to 5.5V, $C_L = 50$ pF, 8 Outputs Switching ⁽⁵⁾		$T_A = -40$ °C to +85°C, $V_{CC} = 4.5$ V to 5.5V, $C_L = 250$ pF, 1 Output Switching ⁽⁶⁾		$T_A = -40$ °C to +85°C, $V_{CC} = 4.5$ V to 5.5V, $C_L = 250$ pF, 8 Outputs Switching ⁽⁷⁾			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	Units
f _{TOGGLE}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.5	ns
t _{PHL}	Data to Outputs	1.5		5.0	1.5	6.0	2.5	8.5	
t _{PZH}	Output Enable	1.5		6.5	2.5	7.5	2.5	9.5	ns
t _{PZL}	Time	1.5		6.5	2.5	7.5	2.5	11.0	
t _{PHZ}	Output Disable	1.0		6.5		(8)		(8)	ns
t _{PLZ}	Time	1.0		5.6					

Notes:

- 5. This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).
- 6. This specification is guaranteed but not tested. The limits represent propagation delay with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load. This specification pertains to single output switching only.
- 7. This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load.
- 8. The 3-STATE delays are dominated by the RC network (500Ω , 250pF) on the output and have been excluded from the datasheet.

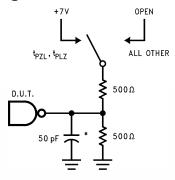
Skew

SOIC package.

		$T_A = -40$ °C to +85°C, $V_{CC} = 4.5$ V to 5.5V, $C_L = 50$ pF, 8 Outputs Switching ⁽¹¹⁾	$T_A = -40$ °C to +85°C, $V_{CC} = 4.5$ V to 5.5V, $C_L = 250$ pF, 8 Outputs Switching ⁽¹²⁾	
Symbol	Parameter	Max.	Max.	Units
t _{OSHL} ⁽⁹⁾	Pin to Pin Skew, HL Transitions	1.3	2.3	ns
t _{OSLH} ⁽⁹⁾	Pin to Pin Skew, LH Transitions	1.0	1.8	ns
t _{PS} ⁽¹³⁾	Duty Cycle, LH-HL Skew	2.0	3.5	ns
t _{OST} ⁽⁹⁾	Pin to Pin Skew, LH/HL Transitions	2.0	3.5	ns
t _{PV} ⁽¹⁰⁾	Device to Device Skew, LH/HL Transitions	2.0	3.5	ns

Notes:

- Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). The specification is guaranteed but not tested.
- 10. Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.
- 11. This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)
- 12. These specifications guaranteed but not tested. The limits represent propagation delays with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load.
- 13. This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.


Capacitance

Symbol Parameter		Conditions T _A = 25°C	Тур.	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V (\overline{OE}, T/\overline{R})$	5.0	pF
C _{I/O} ⁽¹⁴⁾	I/O Capacitance	$V_{CC} = 5.0V (A_n, B_n)$	11.0	pF

Note:

14. $C_{I/O}$ is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitance

Figure 1. Standard AC Test Load

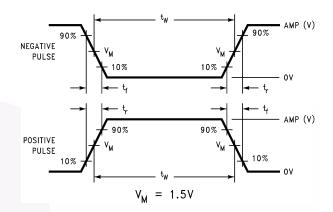


Figure 2. Test Input Signal Levels

Amplitude	Rep. Rate	t _W	t _r	t _f
3.0V	1MHz	500ns	2.5ns	2.5ns

Figure 3. Test Input Signal Requirements

AC Waveforms

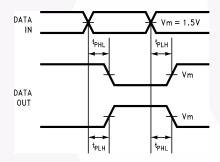


Figure 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

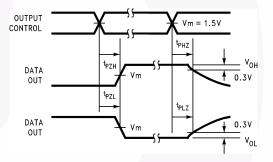


Figure 6. 3-STATE Output HIGH and LOW Enable and Disable Times

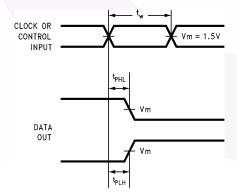


Figure 5. Propagation Delay, Pulse Width Waveforms

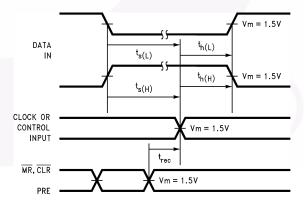
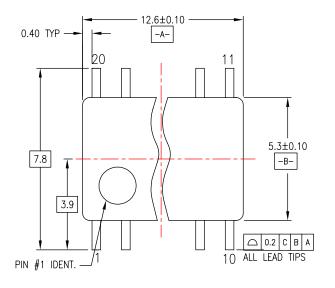
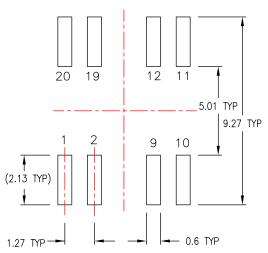
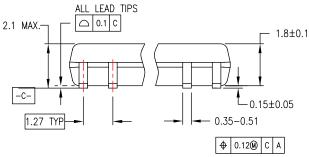


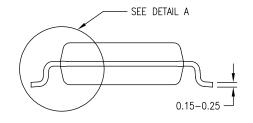
Figure 7. Setup Time, Hold Time and Recovery Time Waveforms


Physical Dimensions 13.00 12.60 11.43 В 9.50 10.65 7.60 10.00 7.40 PIN ONE 0.35 INDICATOR **⊕** 0.25 **M** C B A LAND PATTERN RECOMMENDATION 2.65 MAX SEE DETAIL A 0.33 0.20 0.10 C 0.30 0.10 0.75 0.25 × 45° SEATING PLANE NOTES: UNLESS OTHERWISE SPECIFIED (R0.10) A) THIS PACKAGE CONFORMS TO JEDEC GAGE PLANE MS-013, VARIATION AC, ISSUE E (R0.10) B) ALL DIMENSIONS ARE IN MILLIMETERS. 0.25 C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. D) CONFORMS TO ASME Y14.5M-1994 0.40 SEATING PLANE E) LANDPATTERN STANDARD: SOIC127P1030X265-20L (1.40)DETAIL A F) DRAWING FILENAME: MKT-M20BREV3

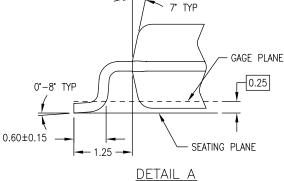

Figure 8. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/


Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION

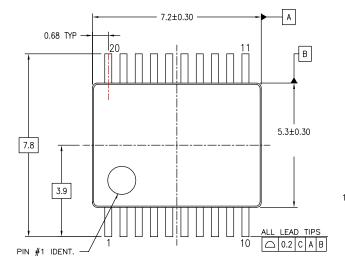


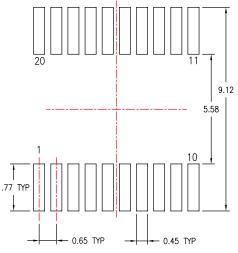
DIMENSIONS ARE IN MILLIMETERS

NOTES:

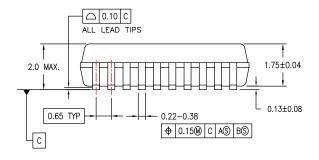
- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.

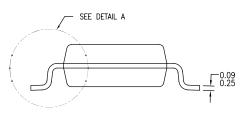
 B. DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.


M20DREVC

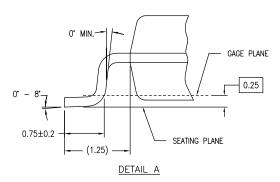

Figure 9. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/


Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATIONS



DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-150, VARIATION AE, DATE 1/94.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M 1994.

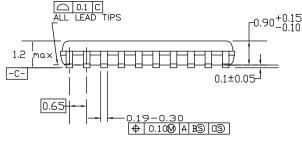
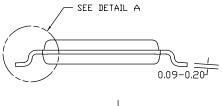
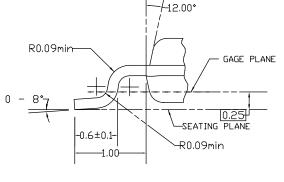

MSA20REVB

Figure 10. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/





NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MTC20REVD1

Figure 11. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

©1991 Fairchild Semiconductor Corporation 74ABT245 Rev. 1.5.0

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ $CROSSVOLT^{\text{\tiny TM}}$ **CTL™**

Current Transfer Logic™ EcoSPARK®

EZSWITCH™ *

Fairchild[®]

Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

 $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® FPS™ $\mathsf{FRFET}^{\scriptscriptstyle{\textcircled{\tiny{\$}}}}$

Global Power Resource^{sм}

Green FPS™

Green FPS™ e-Series™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™

MegaBuck™ MICROCOUPLER™

MillerDrive™ Motion-SPM™ OPTOLOGIC®

MicroFET™ MicroPak™ OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET' QSTM

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™

SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOT™-8

SyncFET™ SYSTEM ®

The Power Franchise®

⊍wer franchise TinyBoost™ TinvBuck™ $\mathsf{TinyLogic}^{\mathbb{R}}$ TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ uSerDes™ **UHC**®

Ultra FRFET™ UniFET™ VCX^{TM}

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 132

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative