Analog Multiplexers/Demultiplexers

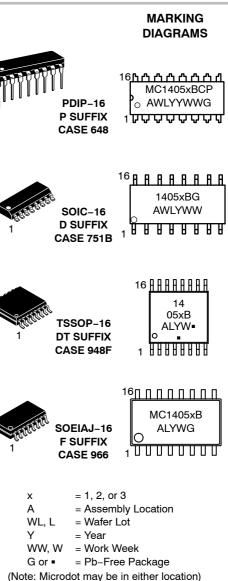
The MC14051B, MC14052B, and MC14053B analog multiplexers are digitally-controlled analog switches. The MC14051B effectively implements an SP8T solid state switch, the MC14052B a DP4T, and the MC14053B a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

Features

- Triple Diode Protection on Control Inputs
- Switch Function is Break Before Make
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range (V_{DD} V_{EE}) = 3.0 to 18 V Note: V_{EE} must be ≤ V_{SS}
- Linearized Transfer Characteristics
- Low-noise $12 \text{ nV}/\sqrt{\text{Cycle}}$, $f \ge 1.0 \text{ kHz}$ Typical
- Pin-for-Pin Replacement for CD4051, CD4052, and CD4053
- For 4PDT Switch, See MC14551B
- For Lower R_{ON}, Use the HC4051, HC4052, or HC4053 High–Speed CMOS Devices
- These Devices are Pb-Free and are RoHS Compliant

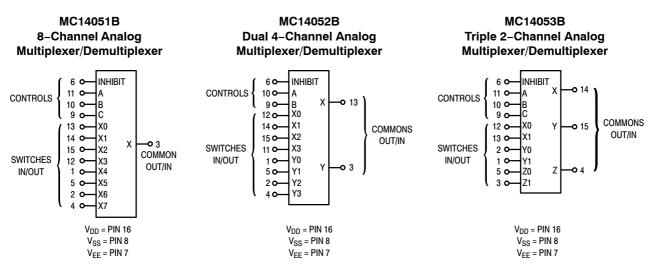
MAXIMUM RATINGS (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit				
V _{DD}	DC Supply Voltage Range (Referenced to V_{EE} , $V_{SS} \ge V_{EE}$)	-0.5 to +18.0	V				
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient) (Referenced to V_{SS} for Control Inputs and V_{EE} for Switch I/O)	-0.5 to V _{DD} + 0.5	V				
l _{in}	Input Current (DC or Transient) per Control Pin	+10	mA				
I _{SW}	Switch Through Current	±25	mA				
PD	Power Dissipation per Package (Note 1)	500	mW				
T _A	Ambient Temperature Range	-55 to +125	°C				
T _{stg}	Storage Temperature Range	-65 to +150	°C				
TL	Lead Temperature (8-Second Soldering)	260	°C				


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65 °C To 125 °C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$


Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} , V_{EE} or V_{DD}). Unused outputs must be left open.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Note: Control Inputs referenced to V_{SS}, Analog Inputs and Outputs reference to V_{EE}. V_{EE} must be \leq V_{SS}.

PIN ASSIGNMENT

_	MC1405	1B			MC14052	В			M	C14053B	
X4 [1•	16	V _{DD} Y0	þ	1• 16	3] V _{DD}	Y1 [1•	16] V _{DD}
X6 [2	15] X2 Y2	þ	2 15	5] X2	Y0 [2	15] Y
ХC	3	14] X1 Y	þ	3 14	ţ] X1	Z1 [3	14] X
X7 [4	13	X0 Y3	þ	4 13	3] X	z C	4	13] X1
X5 [5	12] X3 Y1	þ	5 12	2] X0	Z0 [5	12] X0
INH [6	11	DA INH	þ	6 11] X3	імн [6	11] A [
V _{EE} [7	10] B V _{EE}	þ	7 10	þ] A	V _{EE} [7	10] B
v _{ss} [8	9	C V _{SS}	þ	8 9)] B	v _{ss} [8	9] C

ELECTRICAL CHARACTERISTICS

				- 5	5°C		25°C	_	125°C		
Characteristic	Symbol	V _{DD}	Test Conditions	Min	Мах	Min	Typ (Note 2)	Max	Min	Мах	Unit
SUPPLY REQUIREMENTS	(Voltages I	Referer	nced to V _{EE})	•	•					•	
Power Supply Voltage Range	V _{DD}	-	$V_{DD} - 3.0 \ge V_{SS} \ge V_{EE}$	3.0	18	3.0	-	18	3.0	18	V
Quiescent Current Per Package	I _{DD}	5.0 10 15	$\begin{array}{l} \mbox{Control Inputs:} \\ \mbox{V}_{in} = V_{SS} \mbox{ or } V_{DD}, \\ \mbox{Switch I/O: } V_{EE} \leq V_{I/O} \leq \\ \mbox{V}_{DD}, \mbox{ and } \Delta V_{switch} \leq \\ \mbox{500 mV (Note 3)} \end{array}$		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μA
Total Supply Current (Dynamic Plus Quiescent, Per Package	I _{D(AV)}	5.0 10 15	$T_A = 25^{\circ}C$ only (The channel component, $(V_{in} - V_{out})/R_{on}$, is not included.)		Typical	((0.07 μA/kHz (0.20 μA/kHz (0.36 μA/kHz	z) f + I _{DD}			μΑ
CONTROL INPUTS — INHI	BIT, A, B,	C (Volta	ages Referenced to V _{SS})	-	1		1	1		1	
Low-Level Input Voltage	V _{IL}	5.0 10 15	R _{on} = per spec, I _{off} = per spec	_ _ _	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
High-Level Input Voltage	V _{IH}	5.0 10 15	R _{on} = per spec, I _{off} = per spec	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11	- - -	V
Input Leakage Current	l _{in}	15	V _{in} = 0 or V _{DD}	-	± 0.1	-	±0.00001	± 0.1	-	1.0	μA
Input Capacitance	C _{in}	-		-	-	-	5.0	7.5	-	-	pF
SWITCHES IN/OUT AND CO	OMMONS		N — X, Y, Z (Voltages Refere	nced to	V _{EE})		•				
Recommended Peak-to-Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	0	V _{DD}	0	_	V _{DD}	0	V _{DD}	V _{PP}
Recommended Static or Dynamic Voltage Across the Switch (Note 3) (Figure 5)	ΔV_{switch}	_	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V _{OO}	-	V _{in} = 0 V, No Load	-	_	_	10	_	-	_	μV
ON Resistance	R _{on}	5.0 10 15	$\begin{array}{l} \Delta V_{switch} \leq 500 \text{ mV} \\ (\text{Note 3) } V_{in} = V_{IL} \text{ or } V_{IH} \\ (\text{Control}), \text{ and } V_{in} = \\ 0 \text{ to } V_{DD} \text{ (Switch)} \end{array}$		800 400 220		250 120 80	1050 500 280		1200 520 300	Ω
ΔON Resistance Between Any Two Channels in the Same Package	ΔR_{on}	5.0 10 15		- - -	70 50 45		25 10 10	70 50 45		135 95 65	Ω
Off-Channel Leakage Current (Figure 10)	l _{off}	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	-	± 100	-	± 0.05	± 100	-	±1000	nA
Capacitance, Switch I/O	C _{I/O}	-	Inhibit = V _{DD}	-	-	-	10	-	-	-	pF
Capacitance, Common O/I	C _{O/I}	-	Inhibit = V _{DD} (MC14051B) (MC14052B) (MC14053B)		- - -		60 32 17		- -	- - -	pF
Capacitance, Feedthrough (Channel Off)	C _{I/O}	-	Pins Not Adjacent Pins Adjacent			-	0.15 0.47		-		pF

Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
 For voltage drops across the switch (ΔV_{switch}) > 600 mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

Characteristic	Symbol	V _{DD} – V _{EE} Vdc	Typ (Note 5) All Types	Max	Unit
Propagation Delay Times (Figure 6) Switch Input to Switch Output (R _L = 1 kΩ) MC14051	t _{PLH} , t _{PHL}				ns
t _{PLH} , t _{PHL} = (0.17 ns/pF) C _L + 26.5 ns		5.0	35	90	
t _{PLH} , t _{PHL} = (0.08 ns/pF) C _L + 11 ns		10	15	40	
t_{PLH} , t_{PHL} = (0.06 ns/pF) C _L + 9.0 ns		15	12	30	
MC14052 t _{PLH} , t _{PHL} = (0.17 ns/pF) C _L + 21.5 ns		5.0	30	75	ns
t_{PLH} , $t_{PHL} = (0.08 \text{ ns/pF}) \text{ C}_{L} + 8.0 \text{ ns}$		10	12	30	
t_{PLH} , $t_{PHL} = (0.06 \text{ ns/pF}) C_L + 7.0 \text{ ns}$		15	10	25	
MC14053					ns
t _{PLH} , t _{PHL} = (0.17 ns/pF) C _L + 16.5 ns		5.0	25	65	
t_{PLH} , $t_{PHL} = (0.08 \text{ ns/pF}) C_{L} + 4.0 \text{ ns}$		10	8.0	20	
t_{PLH} , t_{PHL} = (0.06 ns/pF) C _L + 3.0 ns		15	6.0	15	
Inhibit to Output ($R_L = 10 \text{ k}\Omega$, $V_{EE} = V_{SS}$) Output "1" or "0" to High Impedance, or High Impedance to "1" or "0" Level	t _{PHZ} , t _{PLZ} , t _{PZH} , t _{PZL}				ns
MC14051B		5.0	350	700	
		10	170	340	
		15	140	280	
MC14052B		5.0	300	600	ns
		10	155	310	
		15	125	250	
MC14053B		5.0	275	550	ns
		10	140	280	
		15	110	220	
Control Input to Output ($R_L = 1 \text{ k}\Omega$, $V_{EE} = V_{SS}$)	t _{PLH} , t _{PHL}				ns
MC14051B		5.0	360	720	
		10	160	320	
		15	120	240	
MC14052B		5.0	325	650	ns
		10	130	260	
		15	90	180	
MC14053B		5.0	300	600	ns
		10 15	120 80	240 160	
Second Harmonic Distortion	-	10	0.07	_	%
$(R_L = 10K\Omega, f = 1 \text{ kHz}) V_{in} = 5 V_{PP}$	D\4/	10	17		MU
Bandwidth (Figure 7) (R _L = 50 Ω, V _{in} = 1/2 (V _{DD} -V _{EE}) p-p, C _L = 50pF	BW	10	17	_	MHz
$(12 - 00 \text{ L}^2, 10 - 172 (10) \text{ VED}^2, 1$					
$\begin{array}{l} \mbox{Dff Channel Feedthrough Attenuation (Figure 7)} \\ R_L = 1K\Omega, V_{in} = 1/2 (V_{DD} - V_{EE}) \mbox{ p-p} \\ f_{in} = 4.5 \mbox{ MHz} \mbox{ MC14051B} \\ f_{in} = 30 \mbox{ MHz} \mbox{ MC14052B} \\ f_{in} = 55 \mbox{ MHz} \mbox{ MC14053B} \end{array}$	-	10	- 50	_	dB
Channel Separation (Figure 8)	_	10	- 50	_	dB
$(R_L = 1 k\Omega, V_{in} = 1/2 (V_{DD}-V_{EE}) p-p, f_{in} = 3.0 MHz$					
Crosstalk, Control Input to Common O/I (Figure 9) $(R_1 = 1 \ k\Omega, R_L = 10 \ k\Omega$	-	10	75	-	mV

ELECTRICAL CHARACTERISTICS (Note 4) (C_L = 50 pF, T_A = 25°C) (V_{EE} ≤ V_{SS} unless otherwise indicated)

The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance.

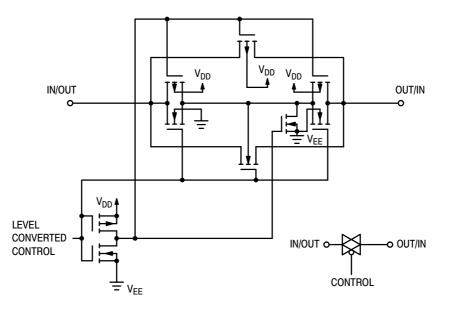


Figure 1. Switch Circuit Schematic

	TRUTH TABLE										
Cont	rol In	pute	\$								
	S	elec	t		ON S	witche	s				
Inhibit	C*	в	Α	MC14051B	MC14	1052B	MQ	C1405	3B		
0	0	0	0	X0	Y0	X0	Z0	Y0	X0		
0	0	0	1	X1	Y1	X1	Z0	Y0	X1		
0	0	1	0	X2	Y2	X2	Z0	Y1	X0		
0	0	1	1	ХЗ	Y3	Х3	Z0	Y1	X1		
0	1	0	0	X4			Z1	Y0	X0		
0	1	0	1	X5			Z1	Y0	X1		
0	1	1	0	X6			Z1	Y1	X0		
0	1	1	1	X7			Z1	Y1	X1		
1	х	х	х	None	No	one		None			

*Not applicable for MC14052

x = Don't Care

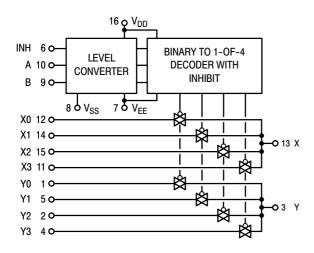


Figure 3. MC14052B Functional Diagram

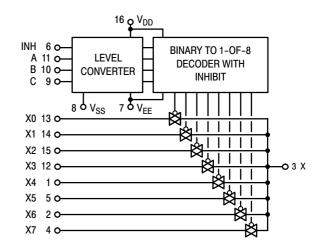
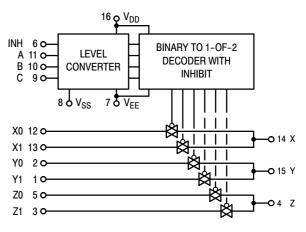



Figure 2. MC14051B Functional Diagram

TEST CIRCUITS

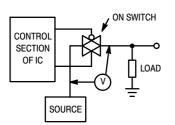


Figure 5. ΔV Across Switch

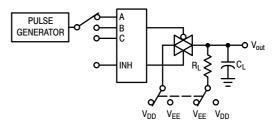


Figure 6. Propagation Delay Times, Control and Inhibit to Output

A, B, and C inputs used to turn ON or OFF the switch under test.

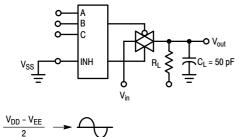


Figure 7. Bandwidth and Off–Channel Feedthrough Attenuation

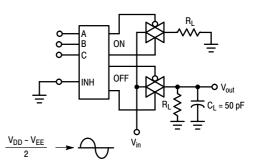
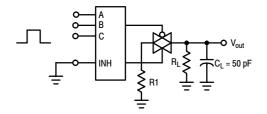



Figure 8. Channel Separation (Adjacent Channels Used For Setup)

NOTE: See also Figures 7 and 8 in the MC14016B data sheet.

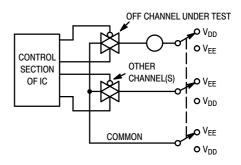
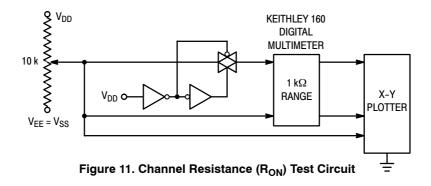
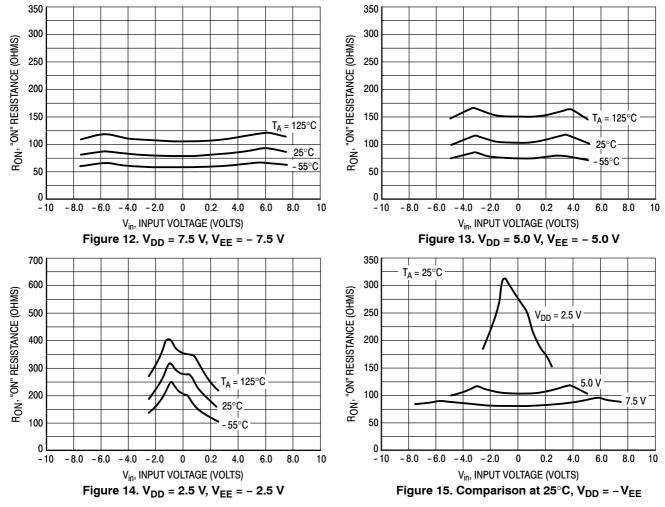




Figure 10. Off Channel Leakage

TYPICAL RESISTANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figures 2, 3, and 4. The 0-to-5 V Digital Control signal is used to directly control a 9 V_{p-p} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE} . The V_{DD} voltage determines the maximum recommended peak above V_{SS} . The V_{EE} voltage determines the maximum swing below V_{SS} . For the example, $V_{DD} - V_{SS} = 5$ V maximum swing above V_{SS} ; $V_{SS} - V_{EE} = 5$ V maximum swing below V_{SS} . The example shows a± 4.5 V signal which allows a 1/2 volt margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The *absolute* maximum potential difference between V_{DD} and V_{EE} is 18.0 V. Most parameters are specified up to 15 V which is the *recommended* maximum difference between V_{DD} and V_{EE} .

Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE} . For example, $V_{DD} = +10$ V, $V_{SS} = +5$ V, and $V_{EE} - 3$ V is acceptable. See the Table below.

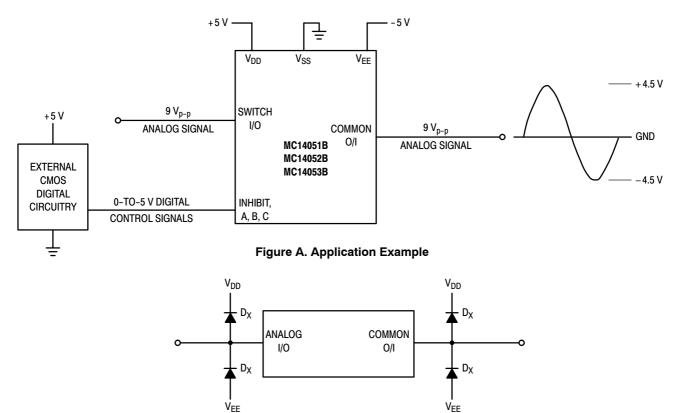
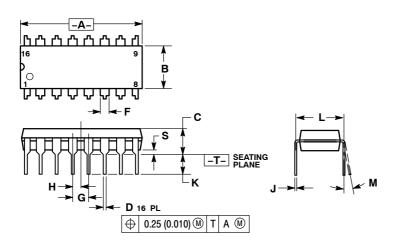


Figure B. External Germanium or Schottky Clipping Diodes

POSSIBLE SUPPLY CONNECTIONS

V _{DD} In Volts	V _{SS} In Volts	V _{EE} In Volts	Control Inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+ 8	0	- 8	+ 8/0	+ 8 to - 8 = 16 V _{p-p}
+ 5	0	- 12	+ 5/0	+ 5 to $-$ 12 = 17 V _{p-p}
+ 5	0	0	+ 5/0	+ 5 to 0 = 5 V _{p-p}
+ 5	0	- 5	+ 5/0	+ 5 to – 5 = 10 V _{p–p}
+ 10	+ 5	- 5	+ 10/ + 5	+ 10 to $- 5 = 15 V_{p-p}$

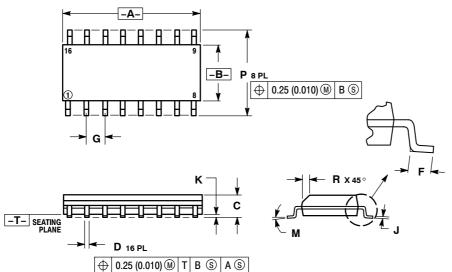

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC14051BCPG	PDIP-16 (Pb-Free)	500 Units / Rail		
MC14051BDG	SOIC-16 (Pb-Free)	48 Units / Rail		
MC14051BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel		
MC14051BDTR2G	TSSOP-16*	2500 / Tape & Reel		
MC14051BFG	SOEIAJ-16 (Pb-Free)	50 Units / Rail		
MC14051BFELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel		
MC14052BCPG	PDIP-16 (Pb-Free)	500 Units / Rail		
MC14052BDG	SOIC-16 (Pb-Free)	48 Units / Rail		
MC14052BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel		
MC14052BDTR2G	TSSOP-16*	2500 / Tape & Reel		
MC14052BFG	SOEIAJ-16 (Pb-Free)	50 Units / Rail		
MC14052BFELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel		
MC14053BCPG	PDIP-16 (Pb-Free)	500 Units / Rail		
MC14053BDG	SOIC-16 (Pb-Free)	48 Units / Rail		
MC14053BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel		
MC14053BDTR2G	TSSOP-16*	2500 / Tape & Reel		
MC14053BFG	SOEIAJ-16 (Pb-Free)	50 Units / Rail		
MC14053BFELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
 Specifications Brochure, BRD8011/D.
 *This package is inherently Pb-Free.

PACKAGE DIMENSIONS

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 **ISSUE T**

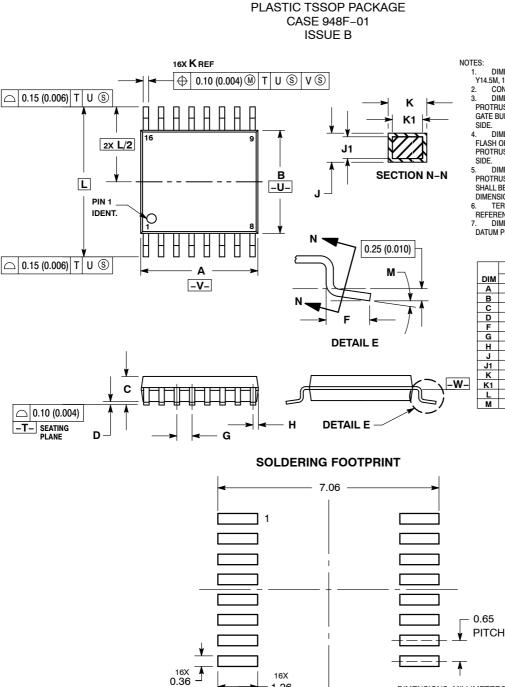


NOTES 1.

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- 2.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4.
- ROUNDED CORNERS OPTIONAL. 5.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
К	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
м	0 °	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

SOIC-16 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE K**


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 1.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD 2. 3.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 4.
- DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 5.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX**

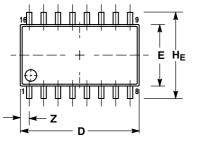
DIMENSIONING AND TOLERANCING PER ANSI

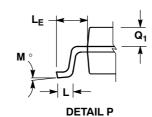
 TUMENSIONING AND TOLENANCING FER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER

DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER

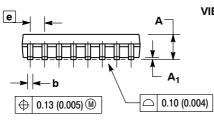
SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DECEDENCE ONLY

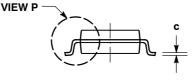

CERMINAL NUMBERS ALL S...
REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT
 THE ANE _W_


	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Η	0.18	0.28	0.007	0.011	
ſ	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
К	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
Г	6.40	BSC 0.252 BSC			
N	0 °	8°	0 °	8 °	


DIMENSIONS: MILLIMETERS

16X 1.26


PACKAGE DIMENSIONS



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
- MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILL IN	IETERS		HES
			-	-
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
Μ	0 °	10 °	0 °	10 °
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent solut. Cwas negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Dance: 401-82-200-0010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative