Is Now Part of ## ON Semiconductor® ## To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees April 1992 Revised May 2005 # 74ABT16245 16-Bit Transceiver with 3-STATE Outputs #### **General Description** The ABT16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/R inputs determine the direction of data flow through the device. The $\overline{\text{OE}}$ inputs disable both the A and B ports by placing them in a high impedance state. #### **Features** - Bidirectional non-inverting buffers - Separate control logic for each byte - 16-bit version of the ABT245 - A and B output sink capability of 64 mA, source capability of 32 mA - Guaranteed output skew - Guaranteed multiple output switching specifications - Output switching specified for both 50 pF and 250 pF loads - Guaranteed simultaneous switching noise level and dynamic threshold performance - Guaranteed latchup protection - High impedance glitch free bus loading during entire power up and power down cycle - Non-destructive hot insertion capability ## **Ordering Code:** | Order Number | Package Number | Package Description | |----------------|----------------|---| | 74ABT16245CSSC | MS48A | 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide | | 74ABT16245CMTD | MTD48 | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6,1mm Wide | Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. #### **Logic Symbol** ## **Pin Descriptions** | Pin Names | Description | |---------------------------------|----------------------------------| | OEn | Output Enable Input (Active LOW) | | T/\overline{R}_n | Transmit/Receive Input | | A ₀ -A ₁₅ | Side A Inputs/Outputs | | B ₀ -B ₁₅ | Side B Inputs/Outputs | ### **Connection Diagram** © 2005 Fairchild Semiconductor Corporation DS010986 www.fairchildsemi.com ## **Truth Tables** | Inputs | | Outputs | |-----------------|------------------|---| | OE ₁ | T/R ₁ | | | L | L | Bus B ₀ –B ₇ Data to Bus A ₀ –A ₇ | | L | Н | Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇ | | Н | Х | HIGH-Z State on A ₀ –A ₇ , B ₀ –B ₇ | | Inputs | | Outputs | |-----------------|------------------|---| | OE ₂ | T/R ₂ | | | L | L | Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅ | | L | Н | Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅ | | Н | X | HIGH-Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅ | - H = HIGH Voltage Level L = LOW Voltage Level - X = Immaterial Z = High Impedance ## **Functional Description** The ABT16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. ## **Logic Diagrams** ## **Absolute Maximum Ratings**(Note 1) -65°C to +150°C Storage Temperature -55°C to +125°C Ambient Temperature under Bias Junction Temperature under Bias -55°C to +150°C -0.5V to +7.0V V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA Voltage Applied to Any Output in the Disabled or Power-Off State -0.5V to 5.5Vin the HIGH State -0.5V to V_{CC} Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) DC Latchup Source Current -500 mA Over Voltage Latchup (I/O) 10V ## **Recommended Operating Conditions** -40°C to +85°C Free Air Ambient Temperature Supply Voltage +4.5V to +5.5V Minimum Input Edge Rate ($\Delta V/\Delta t$) 50 mV/ns Data Input 20 mV/ns Enable Input Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs. #### **DC Electrical Characteristics** | Symbol | Paran | neter | Min | Тур | Max | Units | V _{CC} | Conditions | |------------------------------------|-----------------------------------|---------------------|------|-----|------|-------|-----------------|--| | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | | Recognized HIGH Signal | | V_{IL} | Input LOW Voltage | | | | 0.8 | V | | Recognized LOW Signal | | V _{CD} | Input Clamp Diode Vo | Itage | | | -1.2 | V | Min | $I_{IN} = -18 \text{ mA } (\overline{OE}_n, T/\overline{R}_n)$ | | V _{OH} | Output HIGH Voltage | | 2.5 | | | V | Min | $I_{OH} = -3 \text{ mA } (A_n, B_n)$ | | | | | 2.0 | | | V | Min | $I_{OH} = -32 \text{ mA } (A_n, B_n)$ | | V _{OL} | Output LOW Voltage | | | | 0.55 | V | Min | $I_{OL} = 64 \text{ mA } (A_n, B_n)$ | | I _{IH} | Input HIGH Current | | | | 1 | μА | Max | $V_{IN} = 2.7V (\overline{OE}_n, T/\overline{R}_n) (Note 3)$ | | | | | | | 1 | | | $V_{IN} = V_{CC} (\overline{OE}_n, T/\overline{R}_n)$ | | I _{BVI} | Input HIGH Current Br | eakdown Test | | | 7 | μА | Max | $V_{IN} = 7.0V (\overline{OE}_n, T/\overline{R}_n)$ | | I _{BVIT} | Input HIGH Current Br | reakdown Test (I/O) | | | 100 | μА | Max | $V_{IN} = 5.5V (A_n, B_n)$ | | I _{IL} | Input LOW Current | | | | -1 | μА | Max | $V_{IN} = 0.5V (\overline{OE}_n, T/\overline{R}_n) (Note 3)$ | | | | | | | -1 | | | $V_{IN} = 0.0V (\overline{OE}_n, T/\overline{R}_n)$ | | V _{ID} | Input Leakage Test | | 4.75 | | | V | 0.0 | $I_{ID} = 1.9 \mu A (\overline{OE}_n, T/\overline{R}_n)$ | | | | | | | | | | All Other Pins Grounded | | I _{IH} + I _{OZH} | Output Leakage Curre | nt | | | 10 | μА | 0 – 5.5V | $V_{OUT} = 2.7V (A_n, B_n); \overline{OE} = 2.0V$ | | $I_{IL} + I_{OZL}$ | Output Leakage Curre | | | | -10 | μА | 0 - 5.5V | $V_{OUT} = 0.5V (A_n, B_n); \overline{OE} = 2.0V$ | | I _{OS} | Output Short-Circuit C | | -100 | | -275 | mA | Max | $V_{OUT} = 0.0V (A_n, B_n)$ | | I _{CEX} | Output HIGH Leakage | Current | | | 50 | μА | Max | $V_{OUT} = V_{CC} (A_n, B_n)$ | | I_{ZZ} | Bus Drainage Test | <u> </u> | | | 100 | μА | 0.0 | $V_{OUT} = 5.50V (A_n, B_n);$ | | | | | | | | | | All Others GND | | I _{CCH} | Power Supply Current | | | | 100 | μА | Max | All Outputs HIGH | | I _{CCL} | Power Supply Current | | | | 60 | mA | Max | All Outputs LOW | | I _{CCZ} | Power Supply Current | | | | 100 | μΑ | Max | $\overline{OE}_n = V_{CC}$, $T/\overline{R}_n = GND$ or V_{CC} | | | | | | | | | | All others at V _{CC} or GND | | I _{CCT} | Additional I _{CC} /Input | Outputs Enabled | | | 2.5 | mA | | V _I = V _{CC} - 2.1V | | | | Outputs 3-STATE | | | 2.5 | mA | Max | \overline{OE}_n , $T/\overline{R}_n V_I = V_{CC} - 2.1V$ | | | | Outputs 3-STATE | | | 50 | μА | | Data Input V _I = V _{CC} - 2.1V | | | | | | | | | | All others at V _{CC} or GND | | I _{CCD} | Dynamic I _{CC} | No Load | | | | mA/ | Max | Outputs OPEN | | | (Note 3) | | | | 0.1 | MHz | | $\overline{OE}_n = GND, T/\overline{R}_n = GND \text{ or } V_{CC}$ | | | | | | | | | | One Bit Toggling, 50% Duty Cycle | Note 3: Guaranteed, but not tested. www.fairchildsemi.com #### **DC Extended Electrical Characteristics** | 0 | D | N41 | T | M | Units | v _{cc} | Conditions | | |------------------|--|------|------|-----|-------|-----------------|--|--| | Symbol | Parameter | Min | Тур | Max | | | $C_L = 50 \text{ pF}; R_L = 500\Omega$ | | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | | 0.5 | 0.9 | V | 5.0 | T _A = 25°C (Note 4) | | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | -1.4 | -1.0 | | V | 5.0 | T _A = 25°C (Note 4) | | | V _{OHV} | Minimum HIGH Level Dynamic Output Voltage | 2.5 | 3.0 | | V | 5.0 | T _A = 25°C (Note 5) | | | V _{IHD} | Minimum HIGH Level Dynamic Input Voltage | 2.0 | 1.4 | | V | 5.0 | T _A = 25°C (Note 5) | | | V _{ILD} | Maximum LOW Level Dynamic Input Voltage | | 1.2 | 0.8 | V | 5.0 | T _A = 25°C (Note 6) | | Note 4: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested. #### **AC Electrical Characteristics** | Symbol | Parameter | $T_A = +25^{\circ}C$ $V_{CC} = +5V$ $C_L = 50 \text{ pF}$ | | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$ | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} - 5.5\text{V}$ $C_L = 50 \text{ pF}$ | | Units | | |------------------|-----------------------|---|-----|---|-----|--|-----|-------|-----| | | | Min | Тур | Max | Min | Max | Min | Max | | | t _{PLH} | Propagation | 1.0 | 2.4 | 3.9 | 0.5 | 4.5 | 1.0 | 3.9 | 20 | | t _{PHL} | Delay Data to Outputs | 1.0 | 2.8 | 3.9 | 0.5 | 5.2 | 1.0 | 3.9 | ns | | t _{PZH} | Output Enable | 1.5 | 3.6 | 6.3 | 0.8 | 6.4 | 1.5 | 6.3 | ns | | t _{PZL} | Time | 1.5 | 3.7 | 6.3 | 0.9 | 6.9 | 1.5 | 6.3 | 115 | | t _{PHZ} | Output Disable | 1.3 | 4.6 | 6.9 | 1.3 | 6.9 | 1.3 | 6.9 | ns | | t _{PLZ} | Time | 1.3 | 3.7 | 6.9 | 1.0 | 6.9 | 1.3 | 6.9 | 115 | #### **Extended AC Electrical Characteristics** | Symbol | Parameter | $T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} - 5.5\text{V}$ $C_L = 50 \text{ pF}$ 16 Outputs Switching | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} -5.5\text{V}$ $C_L = 250 \text{ pF}$ 1 Output Switching (Note 8) | | $T_A = -40^{\circ}$ C to +85°C
$V_{CC} = 4.5V-5.5V$
$C_L = 250$ pF
16 Outputs Switching
(Note 9) | | Units | | |---------------------|--------------------------|---|-----------------|--|-----------|--|-----------|-------------|-----| | | | Min | (Note 7)
Typ | Max | (No | e 8)
Max | (Not | e 9)
Max | | | f _{TOGGLE} | Maximum Toggle Frequency | | 100 | | | | | | MHz | | t _{PLH} | Propagation Delay | 1.5 | | 5.0 | 1.5 | 6.0 | 2.5 | 8.0 | | | t _{PHL} | Data to Outputs | 1.5 | | 5.3 | 1.5 | 6.0 | 2.5 | 8.0 | ns | | t _{PZH} | Output Enable | 1.5 | | 6.5 | 2.5 | 8.2 | 2.5 | 10.0 | no | | t _{PZL} | Time | 1.5 | | 6.5 | 2.5 | 8.2 | 2.5 | 9.0 | ns | | t _{PHZ} | Output Disable | 1.0 | | 6.9 | (Not | 2 10) | (Note | . 10) | ne | | t_{PLZ} | Time | 1.0 | | 6.9 | (Note 10) | | (Note 10) | | ns | Note 7: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.). Note 8: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only. Note 9: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. $\textbf{Note 10: } 3\text{-STATE delay are dominated by the RC network (500\Omega, 250 pF) on the output and have been excluded from the datasheet.$ Note 5: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested. Note 6: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested. #### Skew | Symbol | Parameter | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} -5.5\text{V}$ $C_L = 50 \text{ pF}$ 16 Outputs Switching (Note 11) Max | $T_A = -40$ °C to +85 °C
$V_{CC} = 4.5V - 5.5V$
$C_L = 250$ pF
16 Outputs Switching
(Note 12) | Units | |--------------------------------|---|--|---|-------| | t _{OSHL}
(Note 13) | Pin to Pin Skew HL Transitions | 1.3 | 1.5 | ns | | t _{OSLH}
(Note 13) | Pin to Pin Skew LH Transitions | 1.3 | 1.5 | ns | | t _{PS}
(Note 14) | Duty Cycle
LH–HL Skew | 1.5 | 2.0 | ns | | t _{OST}
(Note 13) | Pin to Pin Skew LH/HL Transitions | 1.7 | 2.5 | ns | | t _{PV}
(Note 15) | Device to Device Skew LH/HL Transitions | 2.0 | 3.0 | ns | Note 11: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) Note 12: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 13: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (toSHL), LOW to HIGH (toSLH), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (toST). The specification is guaranteed but not tested. Note 14: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 15: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested ## Capacitance | Symbol | Parameter | Тур | Units | Conditions
T _A = 25°C | |----------------------------|--------------------|-----|-------|---| | C _{IN} | Input Capacitance | 5 | pF | $V_{CC} = 0.0V (\overline{OE}_n, T/\overline{R}_n)$ | | C _{I/O} (Note 16) | Output Capacitance | 11 | pF | $V_{CC} = 5.0V (A_n, B_n)$ | Note 16: $C_{I/O}$ is measured at frequency f=1 MHz, per MIL-STD-883, Method 3012. ## Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.50±0.10 0.40 TYP -B-89 9.20 B.10 50. O.2 C B A ALL LEAD TIPS PIN #1 IDENT LAND PATTERN RECOMMENDATION O.1 C ALL LEAD TIPS SEE DETAIL A 0.90+0.15 0.09-0.20 0.10±0.05 0.50 0.17-0.27 ♦ 0.13\(\old{\text{0}} \) A B\(\old{\text{S}} \) C\(\old{\text{S}} \) 12.00' TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ED, DATE 4/97. B. DIMENSIONS ARE IN MILLIMETERS. SEATING PLANE 0.60±0.10 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD48REVC 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48 Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative © Semiconductor Components Industries, LLC www.onsemi.com