

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

SEMICONDUCTOR

74LCX16652 Low Voltage Transceiver/Register with 5V Tolerant Inputs and Outputs

General Description

The LCX16652 contains sixteen non-inverting bidirectional bus transceivers with 3-STATE outputs providing multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to the HIGH logic level. Output Enable pins (OEAB, OEBA) are provided to control the transceiver function (see Functional Description).

The LCX16652 is designed for low-voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCX16652 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- 5.7 ns t_{PD} max (V_{CC} = 3.3V), 20 µA I_{CC} max
- Power down high impedance inputs and outputs

February 1994

Revised April 2001

- Supports live insertion/withdrawal (Note 1)
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
- Human body model > 2000V
- Machine model > 200V

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} and OE tied to GND through a resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX16652MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LCX16652MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions

Pin Names	Description
A ₀ -A ₁₅	Data Register A Inputs/3-STATE Outputs
B ₀ -B ₁₅	Data Register B Inputs/3-STATE Outputs
CPAB _n , CPBA _n	Clock Pulse Inputs
SAB _n , SBA _n	Select Inputs
$OEAB_n$, \overline{OEBA}_n	Output Enable Inputs

© 2001 Fairchild Semiconductor Corporation DS012005

www.fairchildsemi.com

Downloaded from Arrow.com.

2
ŝ
ဖ
õ
~
×
6
Ľ
4
~

Connection Diagram

OEAB	1	\bigcirc	56	- OEBA
СРАВ	2		55	- СРВА
SAB ₁ —	3		54	- S8A
GND -	4		53	- GND
A ₀ —	5		52	— в _о
A1 —	6		51	— в ₁
v _{cc} —	7		50	— v _{cc}
A ₂ —	8		49	— в ₂
A3 —	9		48	— в ₃
A4 —	10		47	— 8 ₄
GND —	11		46	- GND
A ₅ —	12		45	— B ₅
A ₆ —	13		44	— в _е
A7 —	14		43	— В ₇
4 ₈ —	15		42	— B ₈
A9 -	16		41	— Bg
A10 -	17		40	- B10
GND —	18		39	— GND
A ₁₁ —	19		38	— ^в 1 1
A ₁₂ —	20		37	— ^в 12
A ₁₃ —	21		36	— B ₁₃
v _{cc} —	22		35	— v _{cc}
A ₁₄ —	23		34	- ⁸ 14
A ₁₅ —	24		33	- B ₁₅
GND —	25		32	— GND
sab ₂ —	26		31	- SBA2
срав ₂ —	27		30	СРВА2
0EAB ₂ —	28		29	- OEBA2
1				•

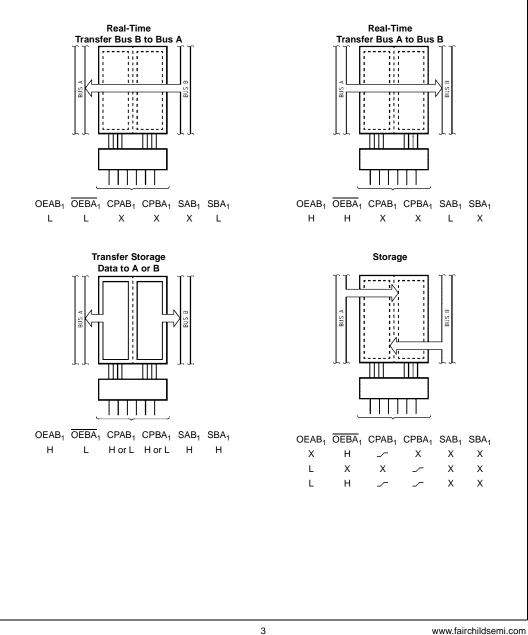
Truth Table

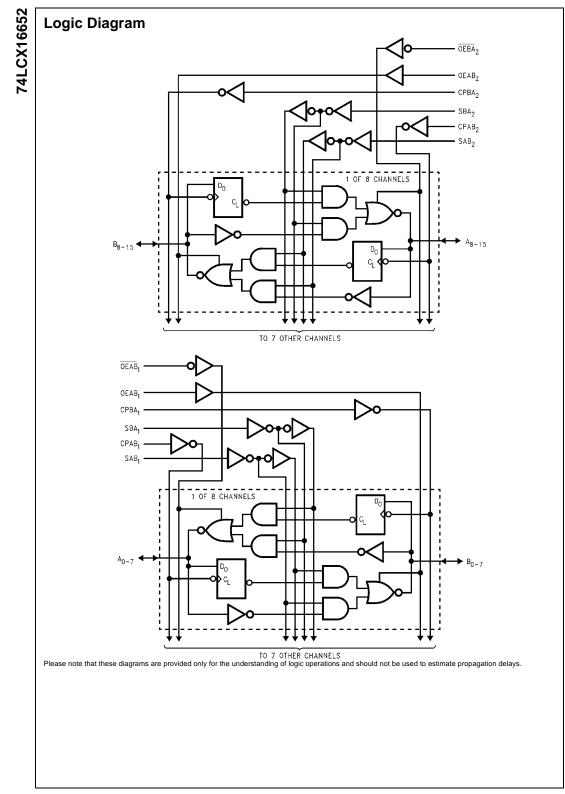
(Note 2)

	Inputs						Outputs	On continue Marda
OEAB	OEBA ₁	CPAB ₁	$CPBA_1$	SAB ₁	SBA ₁	A ₀ thru A ₇	B ₀ thru B ₇	Operating Mode
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	Н	\ \	~	Х	Х			Store A and B Data
Х	Н	\ \	H or L	Х	Х	Input	Not Specified	Store A, Hold B
н	Н	\	\langle	Х	Х	Input	Output	Store A in Both Registers
L	Х	H or L	~	Х	Х	Not Specified	Input	Hold A, Store B
L	L	\ \	~	Х	Х	Output	Input	Store B in Both Registers
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to A Bus
L	L	Х	H or L	Х	Н			Store B Data to A Bus
Н	Н	Х	Х	L	Х	Input	Output	Real-Time A Data to B Bus
н	Н	H or L	Х	Н	Х			Stored A Data to B Bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and
								Stored B Data to A Bus

Note 2: The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs. This also applies to data I/O (A and B: 8–15) and #2 control pins.

Functional Description


In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.


The select (SAB_n, SBA_n) controls can multiplex stored and real-time.

The examples below demonstrate the four fundamental bus-management functions that can be performed with the 74LCX16652.

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW-to-HIGH transitions at the appropriate Clock Inputs (CPABn, CPBAn) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling OEAB_n and $\overline{\mathsf{OEBA}}_n.$ In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

74LCX16652

Absol	Absolute Maximum Ratings(Note 3)							
Symbol	Parameter	Value	Conditions					
V _{CC}	Supply Voltage	-0.5 to +7.0						
VI	DC Input Voltage	-0.5 to +7.0						
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE					
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 4)					

74LCX16652

Units

V ٧

V

mΑ

mΑ

mΑ

mΑ

mΑ

°C

Recommended Operating Conditions (Note 5)

Symbol	Parameter	Parameter			Units	
V _{CC}	Supply Voltage	2.0	3.6	V		
		Data Retention	1.5	3.6	v	
VI	Input Voltage		0	5.5	V	
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V	
		3-STATE	0	5.5	v	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24		
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA	
		$V_{CC}=2.3V-2.7V$		±8		
Τ _A	Free-Air Operating Temperature		-40	85	°C	
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V	

-0.5 to V_{CC} + 0.5

-50

-50

+50

±50

±100

±100

-65 to +150

V_I < GND

V_O < GND

 $V_{O} > V_{CC}$

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

DC Input Diode Current

Storage Temperature

DC Output Diode Current

DC Output Source/Sink Current

DC Supply Current per Supply Pin

DC Ground Current per Ground Pin

 $I_{\rm IK}$

I_{OK}

 I_0

I_{CC}

I_{GND}

T_{STG}

Note 5: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
-			(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		v
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μA
I _{oz}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}	2.3 - 3.0		± 3 .0	μA
I _{OFF}	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0		10	μΑ

74LCX16652

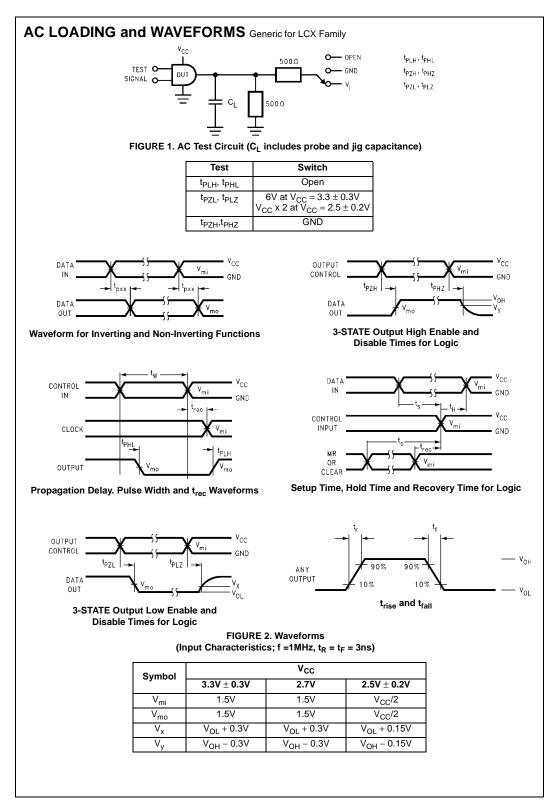
DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	
Cymbol	i didilicitei	Contactions	(V)	Min	Max	onita	
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		20	μA	
		$3.6V \le V_I, V_O \le 5.5V$ (Note 6)	2.3 - 3.6		±20	μΛ	
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ	

Note 6: Outputs disabled or 3-STATE only.

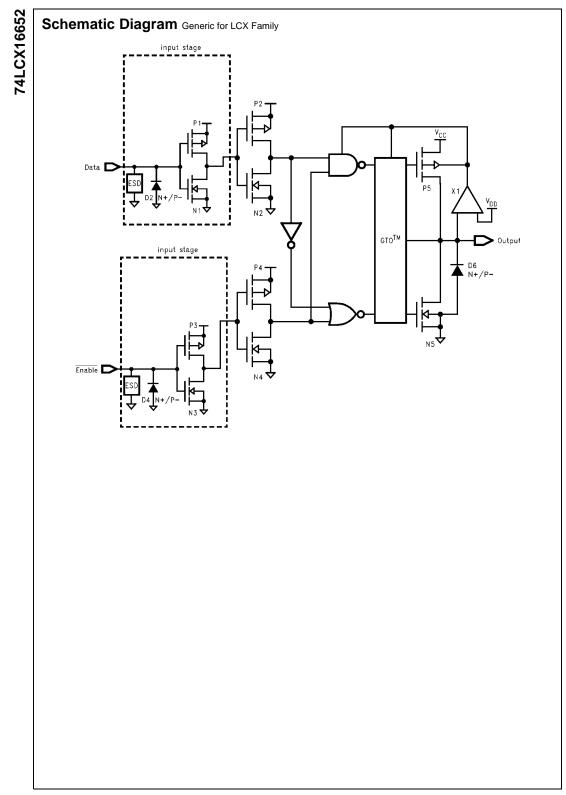
AC Electrical Characteristics

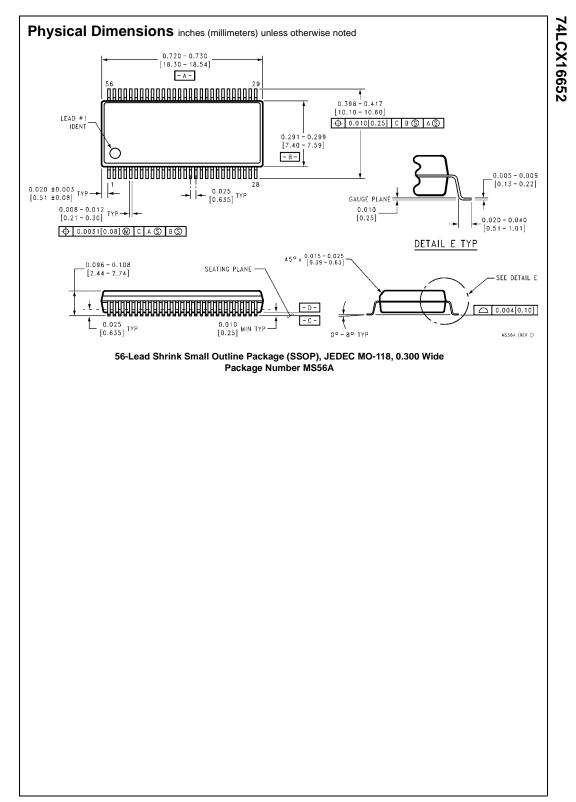
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Barrantas	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$V_{CC} = 2.5V \pm 0.2V$ $C_L = 30 \text{ pF}$		
	Parameter							Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	170						MHz
t _{PHL}	Propagation Delay	1.5	5.7	1.5	6.2	1.5	6.8	
t _{PLH}	Bus to Bus	1.5	5.7	1.5	6.2	1.5	6.8	ns
t _{PHL}	Propagation Delay	1.5	6.2	1.5	7.0	1.5	7.4	
t _{PLH}	Clock to Bus	1.5	6.2	1.5	7.0	1.5	7.4	ns
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.0	1.5	7.8	ns
t _{PLH}	Select to Bus	1.5	6.5	1.5	7.0	1.5	7.8	115
t _{PZL}	Output Enable Time	1.5	7.0	1.5	8.0	1.5	9.1	
t _{PZH}		1.5	7.0	1.5	8.0	1.5	9.1	ns
t _{PLZ}	Output Disable Time	1.5	6.5	1.5	7.0	1.5	7.8	
t _{PHZ}		1.5	6.5	1.5	7.0	1.5	7.8	ns
t _S	Setup Time	2.5		2.5		3.0		ns
t _H	Hold Time	1.5		1.5		2.0		ns
t _W	Pulse Width	3.0		3.0		3.5		ns
t _{OSHL}	Output to Output Skew (Note 7)		1.0					
toslh			1.0					ns

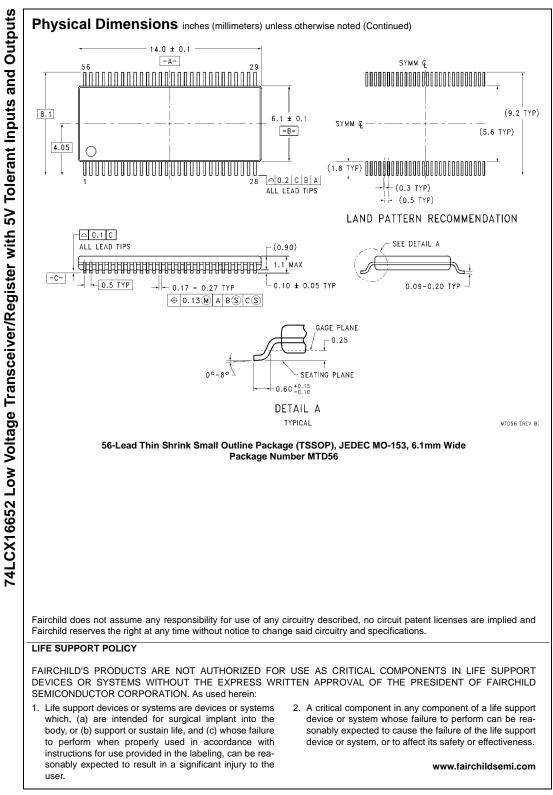

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Gymbol	- didinotor	Conditions	(V)	Typical	01110
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	20	pF


74LCX16652

7

9

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.