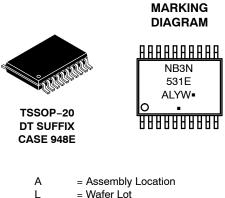
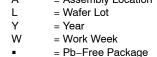
3.3 V Xtal or LVTTL/LVCMOS Input 2:1 MUX to 1:4 LVPECL Fanout Buffer

Description

The NB3N853531E is a low skew 3.3 V supply 1:4 clock distribution fanout buffer. An input MUX selects either a Fundamental Parallel Mode Crystal or a LVCMOS/LVTTL Clock by using the CLK_SEL pin (HIGH for Crystal, LOW for Clock) with LVCMOS / LVTTL levels.

The single ended CLK input is translated to four LVPECL Outputs. Using the crystal input, the NB3N853531E can be a Clock Generator. A CLK_EN pin can enable or disable the outputs synchronously to eliminate runt pulses using LVCMOS/LVTTL levels (HIGH to enable outputs, LOW to disable outputs).


Features


- Four Differential 3.3 V LVPECL Outputs
- Selectable Crystal or LVCMOS/LVTTL CLOCK Inputs
- Up to 266 MHz Clock Operation
- Output to Output Skew: 30 ps (Max)
- Device to Device Skew 200 ps (Max)
- Propagation Delay 1.8 ns (Max)
- Operating Range: $V_{CC} = 3.3 \pm 5\% V(3.135 \text{ to } 3.465 \text{ V})$
- Additive Phase Jitter, RMS: 0.053 ps (Typ)
- Synchronous Clock Enable Control
- Industrial Temp. Range (-40°C to 85°C)
- Pb-Free TSSOP-20 Package
- Ambient Operating Temperature Range -40°C to +85°C
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

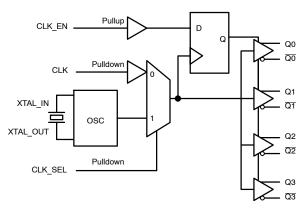


Figure 1. Simplified Logic Diagram

1

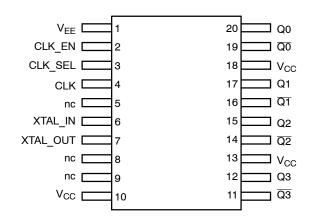


Figure 2. Pinout Diagram (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Open De- fault	Description
1	V _{EE}			Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation.
2	CLK_EN	LVCMOS / LVTTL	Pullup	Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, $\overline{\text{Qx}}$ LOW)
3	CLK_SEL	LVCMOS / LVTTL	Pulldown	Clock Input Select (HIGH selects crystal, LOW selects CLK input)
4	CLK	LVCMOS / LVTTL	Pulldown	Clock Input. Float open when unused.
5, 8, 9	nc			No Connect
6	XTAL_IN	Crystal		Crystal Oscillator Input (used with pin 7). Float open when unused.
7	XTAL_OUT	Crystal		Crystal Oscillator Output (used with pin 6). Float open when unused.
10, 13, 18	V _{CC}			Positive Power Supply pins must be externally connected to power supply to guarantee proper operation.
11, 14, 16, 19	<u>Q[3:0]</u>	LVPECL		Complement Differential Outputs (See AND8020 for termination)
12, 15, 17, 20	Q[3:0]	LVPECL		True Differential Outputs (See AND8020 for termination)

Table 2. FUNCTIONS

Inputs			Outputs			
CLK_EN CLK_SEL Input Function		Output Function	Qx	Qx		
0	0	CLK input selected	Disabled	LOW	HIGH	
0	1	Crystal Inputs Selected	Disabled	LOW	HIGH	
1	0	CLK input selected	Enabled	CLK0	Invert of CLK1	
1	1	Crystal Inputs Selected	Enabled	CLK1	Invert of CLK1	

1. After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3.

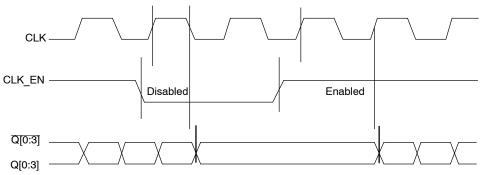


Figure 3. CLK_EN Timing Diagram

Table 3. ATTRIBUTES (Note 2)

Characteristics	Value			
Internal Input Pullup Resistor	50 kΩ			
Internal Input Pulldown Resistor	50 kΩ			
C _{in} Input Capacitance	4 pF			
	an Body Model > 2 kV Machine Model > 200 V			
Moisture Sensitivity, Indefinite Time Out of Dryp	ack (Note 2) Level 1			
Flammability Rating Oxygen Index	UL 94 V-0 @ 0.125 in 28 to 34			
Transistor Count	333 Devices			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Supply Voltage			4.6	V
V _{in}	Input Voltage			$-0.5\leqV_{ }\leqVCC+0.5$	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range, Industrial			$-40 \text{ to } \le +85$	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ _{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm	Single-Layer PCB (700 mm ² , 2 oz)	128	°C/W
		200 lfpm	Multi-Layer PCB (700 mm ² , 2 oz)	94	
θJC	Thermal Resistance (Junction-to-Case)	(Note 4)	TSSOP-20	23 to 41	°C/W
T _{sol}	Wave Solder			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.

4. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Table 5. CRYSTAL CHARACTERISTICS AND CONNECTIONS

Parameter	Min	Тур	Max	Unit
Mode of Oscillation		Fundamental Parallel		
Frequency	12		40	MHz
Equivalent Series Resistance (ESR)			50	Ω
Shunt Capacitance			7	pF
Drive Level			1	mW

Table 6. DC CHARACTERISTICS V_{CC} = $3.3 \pm 5\%$ V (3.135 to 3.465 V), V_{EE} = 0 V, T_A = -40° C to $+85^{\circ}$ C (Note 5)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			60	mA
V _{IH}	Input HIGH Voltage			V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage			0.8	V
Цн	Input High Current (V _{CC} = 3.456 V) CLK, CLK_SEL = 3.456 V CLK_EN = 3.456 V			150 5	μA
IIL	Input LOW Current (V _{CC} = 3.456 V) CLK, CLK_SEL = 3.456 V CLK_EN = 3.456 V	-5 -150			μA
V _{OH}	Output HIGH Voltage	V _{CC} – 1.4		V _{CC} – 0.9	V
V _{OL}	Output LOW Voltage			V _{CC} – 1.7	V
VOUT _{SWING}	Output Voltage Swing (peak-to-peak)	0.6		1.0	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4.

Table 7. AC CHARACTERISTICS V_{CC} = $3.3 \pm 5\%$ V (3.135 to 3.465 V), V_{EE} = 0 V, TA = -40° C to $+85^{\circ}$ C (Note 6)

Symbol	Characteristic		Тур	Max	Unit
F _{MAX}	Maximum Operating Frequency	0		266	MHz
t _{PD}	Propagation Delay (Notes 7 and 9)	1.1		1.8	ns
tSKEW _{DC}	Duty Cycle Skew same path similar conditions at 50 MHz (Notes 7, 8 and 9)	46		54	%
tSKEW _{O-O}	Output to Output Skew Within A Device (Notes 7, 8 and 9)			30	ps
tSKEW _{D-D}	Device to Device Skew similar path and conditions (Notes 7, 8 and 9)			200	ps
ţлт	Additive Phase Noise Jitter (RMS) @ 155.52 MHz (Integrated from 12 kHz to 20 MHz) See Figure 6. (Note 9)		0.053		ps
t _r /t _f	Output rise and fall times (20% and 80% points) (Note 9)	225		600	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4.

7. Measured under the same supply voltage, output loading, and input conditions.

8. Similar conditions.

9. Limits do not apply to overdriving XTAL_IN.

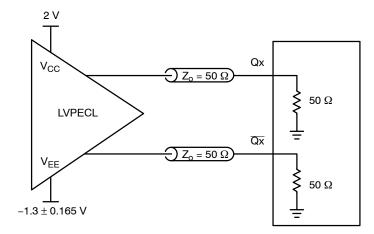
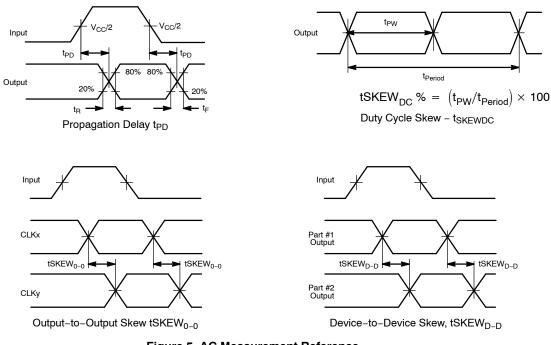



Figure 4. Typical Test Setup and Termination for Evaluation. A split supply of V_{CC} = 2.0 V and V_{EE} = -1.3 ±0.165 V allows a convenient direct connection termination into typical oscilloscope 50 Ω to GND impedance modules. For Application termination schemes see AND8020.

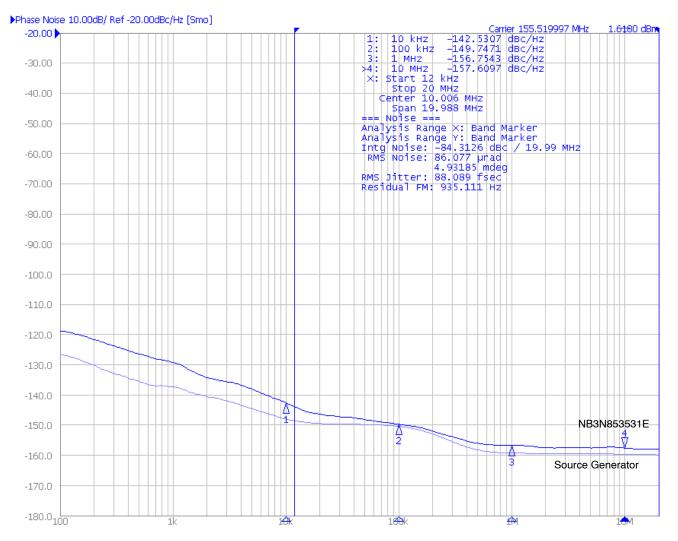
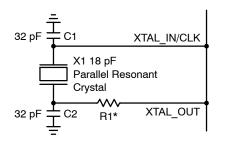
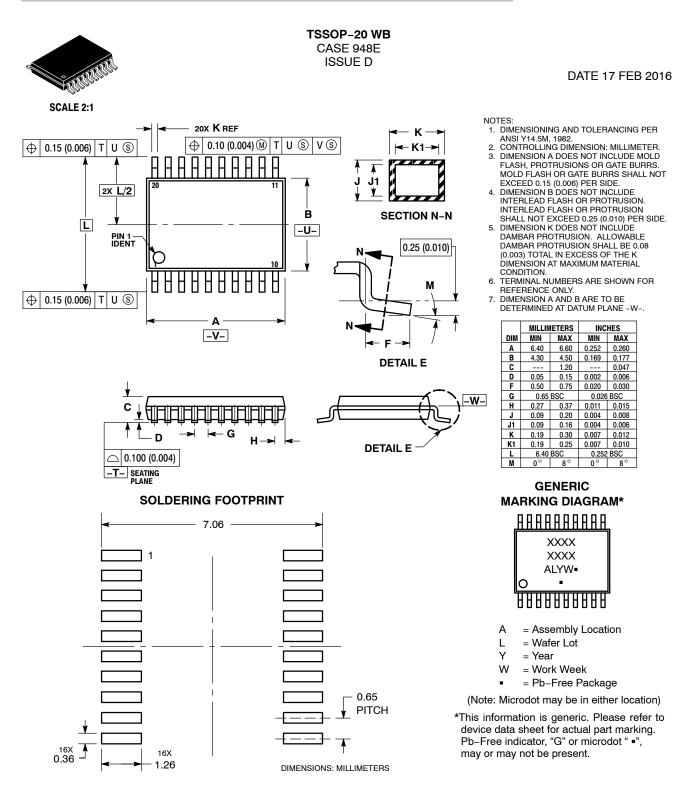




Figure 6. For 155.52 MHz Carrier, the NB3N853531E Additive Phase Noise (dBc/Hz) verses SSB Offset Frequency (Hz) Integrated Jitter from 12 kHz to 20 MHz (Upper Heavy Line) is 88.1 fs RMS. The E8663B Source Generator Additive Phase Noise (Lower Light Line) is 70.1 fs RMS. Where t_{JIT} = √(t_{JIToutput})² - (t_{JITinput})² = 53 fs

Application – Crystal Input Interface

Figure 7 shows the NB3N853531E device crystal oscillator interface using a typical parallel resonant crystal. A parallel crystal with loading capacitance $C_L = 18$ pF could use Series Load Caps C1 = 32 pF and C2 = 32 pF as nominal values, after subtracting a typical 4 pF of stray cap per line. The frequency accuracy and duty cycle skew can be fine tuned by adjusting the C1 and C2 values. For example, increasing the C1 and C2 values will reduce the operational frequency. Note R1 is optional and may be 0 Ω .

Figure 7. NB3N853531E Crystal Oscillator Interface *R1 is optional. Assuming 4 pF stray cap per pin.



ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N853531EDTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NB3N853531EDTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1			
ON Semiconductor and 🔊 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥