

√RoHS

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These 50 W RF power LDMOS transistors are designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1995 MHz.

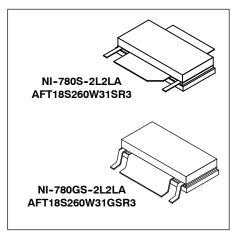
1800 MHz

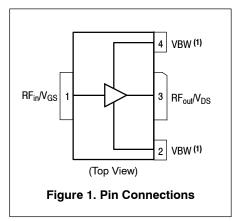
• Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 1800 mA, P_{out} = 50 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
1805 MHz	18.4	27.2	7.1	-35.2	-11
1840 MHz	19.3	28.0	7.1	-35.0	-24
1880 MHz	19.6	29.3	7.0	-34.0	-14

1900 MHz

Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 1800 mA, P_{out} = 50 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
1930 MHz	19.0	25.1	6.8	-34.2	-20
1960 MHz	19.3	25.6	6.9	-34.5	-18
1995 MHz	19.6	26.6	6.8	-33.9	-12


Features

- Designed for Wide Instantaneous Bandwidth Applications
- Greater Negative Gate-Source Voltage Range for Improved Class C
 Operation
- Able to Withstand Extremely High Output VSWR and Broadband Operating Conditions
- Optimized for Doherty Applications

1805–1995 MHz, 50 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTORS

^{1.} Device can operate with the V_{DD} current supplied through pin 2 or pin 4 alone.

Table 1. Maximum Ratings

Symbol	Value	Unit
V _{DSS}	-0.5, +65	Vdc
V _{GS}	-6.0, +10	Vdc
V _{DD}	32, +0	Vdc
T _{stg}	-65 to +150	°C
T _C	-40 to +125	°C
TJ	-40 to +225	°C
CW	168 1.1	W W/°C
	VDSS VGS VDD Tstg TC TJ	V _{DSS} -0.5, +65 V _{GS} -6.0, +10 V _{DD} 32, +0 T _{stg} -65 to +150 T _c -40 to +125 T _J -40 to +225 CW 168

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 91°C, 50 W CW, 28 Vdc, I _{DQ} = 1800 mA, 1840 MHz	$R_{ heta JC}$	0.32	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics	·				
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	IDSS	—	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—	_	1	μAdc
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 360 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage	V _{GS(Q)}	1.4	1.8	2.2	Vdc

Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 1800 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.4	1.8	2.2	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.6 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

Functional Tests ^(4,5) (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 1800 mA, P_{out} = 50 W Avg., f = 1880 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	18.5	19.6	21.0	dB
Drain Efficiency	η _D	26.0	29.3	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.3	7.0	_	dB
Adjacent Channel Power Ratio	ACPR	_	-34.0	-30.0	dBc
Input Return Loss	IRL	_	-14	6	dB

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf/calculators.

3. Refer to <u>AN1955</u>, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u> and search for AN1955.

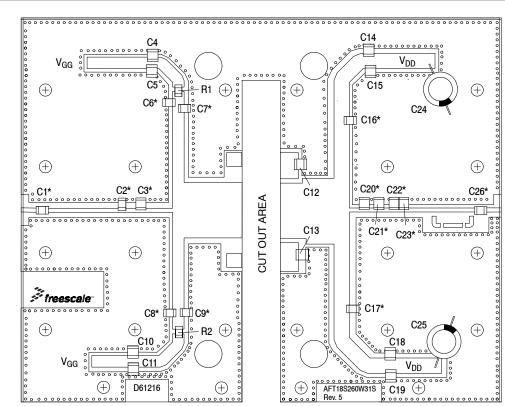
4. Part internally matched both on input and output.

5. Measurements made with device in straight lead configuration, before any lead forming operation is applied. Lead forming is used for gull wing (GS) parts.

(continued)

AFT18S260W31SR3 AFT18S260W31GSR3

2


Table 4. Electrical Characteristics (T_A = $25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Load Mismatch (In Freescale Test Fixture, 50 ohm system) I _{DQ} = 1800 m	A, f = 1840 M	Hz			
VSWR 10:1 at 32 Vdc, 269 W CW ⁽¹⁾ Output Power (3 dB Input Overdrive from 229 W CW ⁽¹⁾ Rated Power)	No Device Degradation				
Typical Performance (In Freescale Test Fixture, 50 ohm system) V_{DD} = 2	8 Vdc, I _{DQ} = 1	1800 mA, 180	5–1880 MHz	Bandwidth	
P _{out} @ 1 dB Compression Point, CW	P1dB	_	229 (1)	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 1805–1880 MHz frequency range.)	Φ	_	-13	_	o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		85	_	MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 50 W Avg.	G _F	_	1.2		dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG		0.001		dB/°C
Output Power Variation over Temperature (-30°C to +85°C) ⁽¹⁾	∆P1dB	_	0.011	_	dB/°C

Table 5. Ordering Information

Device	Tape and Reel Information	Package
AFT18S260W31SR3		NI-780S-2L2LA
AFT18S260W31GSR3	R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel	NI-780GS-2L2LA

1. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

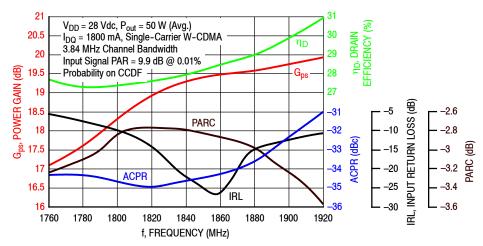
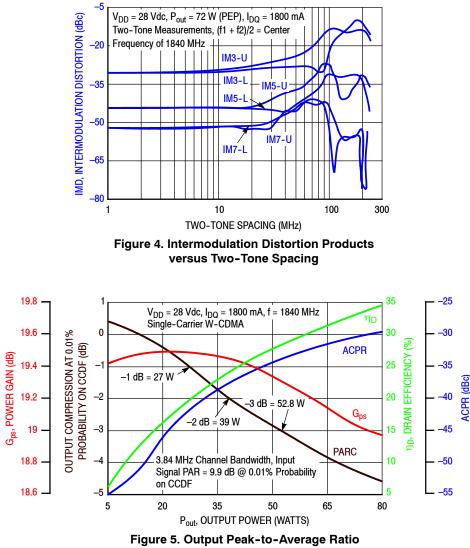
*C1, C2, C3, C6, C7, C8, C9, C16, C17, C20, C21, C22, C23, and C26 are mounted vertically.

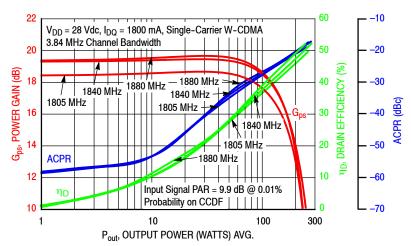
Figure 2. AFT18S260W31SR3 Test Circuit Component Layout

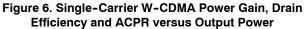
Table 6. AFT18S260W31SR3 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C6, C7, C9, C10, C17, C18, C19, C20, C26	8.2 pF Chip Capacitors	ATC100B8R2CT500XT	ATC
C2	1.0 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
C3	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C4, C5, C11, C12, C13, C14, C15, C16, C21, C22	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
C8	0.5 pF Chip Capacitor	ATC100B0R5BT500XT	ATC
C23	2.0 pF Chip Capacitor	ATC100B2R0BT500XT	ATC
C24, C25	470 μ F, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
R1, R2	2.37 Ω, 1/4 W Chip Resistors	CRCW12062R37FNEA	Vishay
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D61216	MTL

TYPICAL CHARACTERISTICS — 1805–1880 MHz


Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 50 Watts Avg.



Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS — 1805–1880 MHz

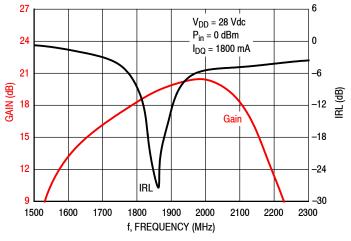


Figure 7. Broadband Frequency Response

Table 7. Load Pull Performance — Maximum Power Tuning

				Max Output Power							
			P1dB								
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
1805	0.90 – j2.84	0.93 + j2.68	1.10 – j3.64	18.1	55.0	313	52.8	-10			
1840	0.88 – j2.79	1.07 + j2.71	1.06 – j3.72	18.1	54.9	307	51.2	-10			
1880	1.12 – j2.86	1.35 + j2.80	1.06 – j3.80	18.2	54.5	284	50.8	-10			

V_{DD} = 28 Vdc, I_{DQ} = 2110 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

				Ma	ax Output Pov	wer				
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	0.90 – j2.84	0.90 + j2.82	1.10 – j3.82	15.9	55.7	373	53.1	-15		
1840	0.88 – j2.79	1.06 + j2.85	1.11 – j3.88	16.0	55.6	366	52.5	-16		
1880	1.12 – j2.86	1.37 + j2.97	1.06 – j3.92	16.0	55.4	344	51.6	-15		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

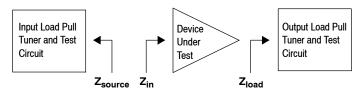
 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 8. Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 2110 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

Max Drain Efficiency											
				P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
1805	0.90 – j2.84	0.87 + j2.65	1.70 – j2.31	20.9	52.9	195	63.1	-17			
1840	0.88 – j2.79	1.02 + j2.70	1.59 – j2.46	20.9	53.0	200	62.1	-17			
1880	1.12 – j2.86	1.32 + j2.81	1.48 – j2.63	20.8	52.8	190	60.3	-16			

			Max Drain Efficiency							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
1805	0.90 – j2.84	0.85 + j2.75	1.55 – j2.50	18.5	54.0	251	64.1	-25		
1840	0.88 – j2.79	1.02 + j2.84	1.50 – j2.56	18.7	53.9	245	63.2	-25		
1880	1.12 – j2.86	1.34 + j2.97	1.47 – j2.79	18.6	53.8	240	61.0	-24		

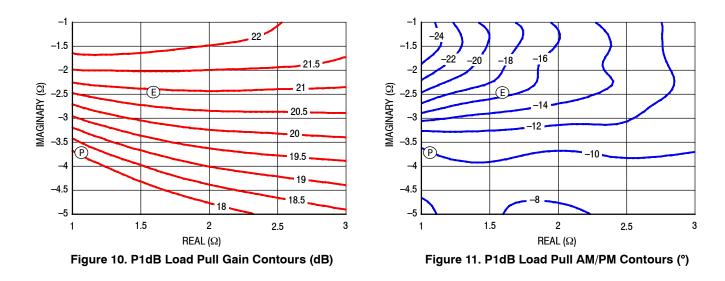

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.


P1dB – TYPICAL LOAD PULL CONTOURS – 1840 MHz

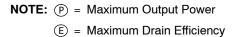
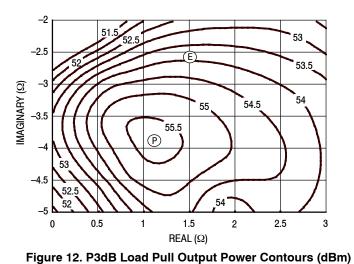


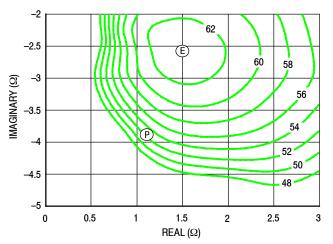
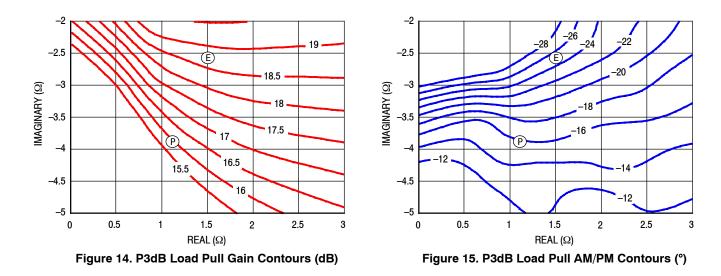
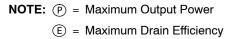
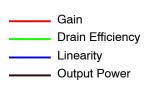
Figure 8. P1dB Load Pull Output Power Contours (dBm)

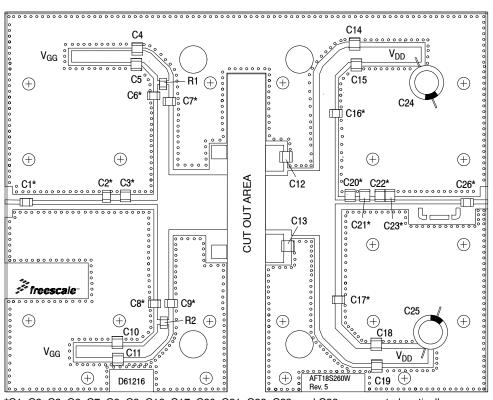
Figure 9. P1dB Load Pull Efficiency Contours (%)



- Gain
 Gain
 Drain Efficiency
- _____ Linearity
- _____ Output Power

P3dB – TYPICAL LOAD PULL CONTOURS – 1840 MHz


Figure 13. P3dB Load Pull Efficiency Contours (%)

*C1, C2, C3, C6, C7, C8, C9, C16, C17, C20, C21, C22, C23, and C26 are mounted vertically.

Figure 16. AFT18S260W31SR3 Test Circuit Component Layout — 1930–1995 MHz

Table 9. AFT18S260W31SR3 Test Circuit Component Designations and Values — 1	1930–1995 MHz
---	---------------

Part	Description	Part Number	Manufacturer
C1, C26	10 pF Chip Capacitors	ATC100B100JT500XT	ATC
C2, C3	1.2 pF Chip Capacitors	ATC100B1R2BT500XT	ATC
C4, C5, C10, C11, C12, C13, C14, C15, C18, C19	10 μF, Chip Capacitors	GRM32ER61H106KA12L	Murata
C6, C7, C8, C9	7.5 pF Chip Capacitors	ATC100B7R5CT500XT	ATC
C16, C17	8.2 pF Chip Capacitors	ATC100B8R2CT500XT	ATC
C20, C23	0.5 pF Chip Capacitors	ATC100B0R5BT500XT	ATC
C21	2.2 pF Chip Capacitor	ATC100B2R2JT500XT	ATC
C22	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C24, C25	470 μ F, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
R1, R2	2.37 Ω , 1/4 W Chip Resistors	CRCW12062R37FNEA	Vishay
PCB	Rogers RO4350B, 0.020″, $\epsilon_r = 3.66$	D61216	MTL

TYPICAL CHARACTERISTICS — 1930–1995 MHz

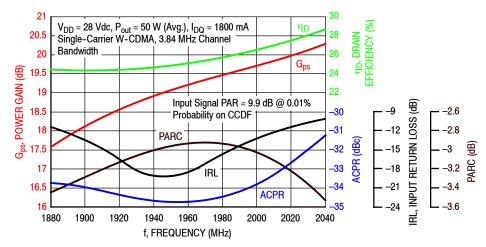


Figure 17. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 50 Watts Avg.

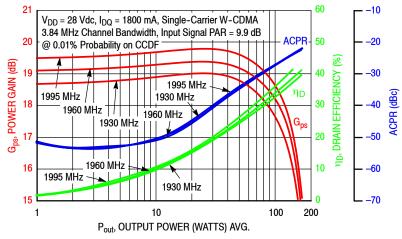


Figure 18. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

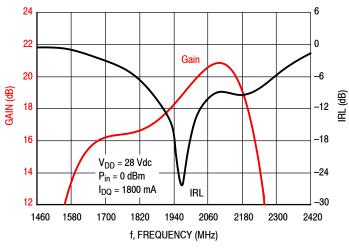


Figure 19. Broadband Frequency Response

Table 10. Load Pull Performance — Maximum Power Tuning

			Max Output Power P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1930	1.49 – j3.03	1.79 + j2.85	1.11 – j4.04	18.6	54.5	284	50.7	-10		
1960	1.62 – j3.06	2.11 + j2.78	1.12 – j4.30	18.5	54.5	282	49.5	-11		
1995	1.98 – j2.99	2.53 + j2.49	1.21 – j4.65	18.5	54.3	270	47.1	-10		

V_{DD} = 28 Vdc, I_{DQ} = 2107 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Output Power							
			P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
1930	1.49 – j3.03	1.88 + j3.04	1.11 – j4.22	16.2	55.3	342	50.4	-16		
1960	1.62 – j3.06	2.26 + j2.97	1.16 – j4.40	16.4	55.3	340	50.9	-16		
1995	1.98 – j2.99	2.76 + j2.61	1.26 – j4.71	16.5	55.2	329	49.2	-16		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

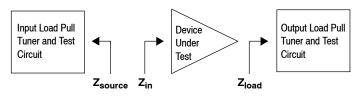
Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 11. Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 2107 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

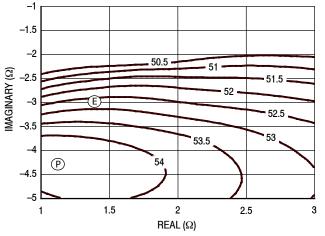
				Max	Drain Efficie	ency					
				P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
1930	1.49 – j3.03	1.73 + j2.80	1.33 – j2.89	21.2	52.8	193	60.7	-18			
1960	1.62 – j3.06	2.00 + j2.70	1.39 – j3.00	21.3	52.7	186	59.9	-17			
1995	1.98 – j2.99	2.36 + j2.41	1.43 – j3.39	21.1	52.8	189	56.7	-15			

				Max	Drain Efficie	ency				
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
1930	1.49 – j3.03	1.84 + j3.00	1.33 – j3.00	19.1	53.7	237	61.6	-26		
1960	1.62 – j3.06	2.20 + j2.87	1.39 – j3.09	19.1	53.6	230	61.1	-25		
1995	1.98 – j2.99	2.64 + j2.48	1.38 – j3.43	19.1	53.7	235	58.5	-22		


(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.


 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB – TYPICAL LOAD PULL CONTOURS – 1960 MHz

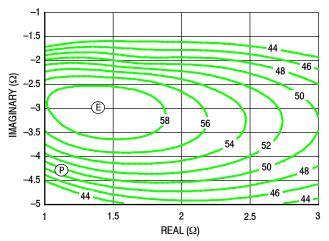
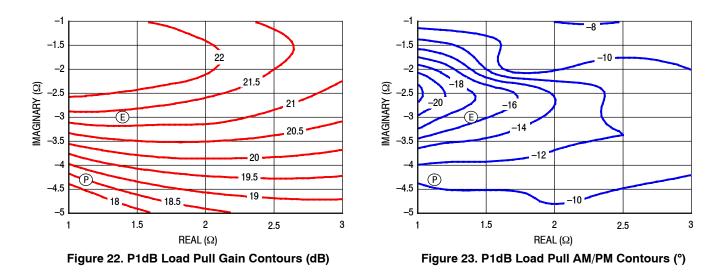
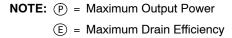
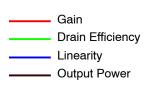





Figure 20. P1dB Load Pull Output Power Contours (dBm)

P3dB – TYPICAL LOAD PULL CONTOURS – 1960 MHz

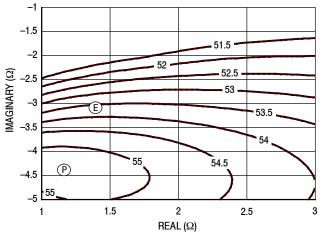


Figure 24. P3dB Load Pull Output Power Contours (dBm)

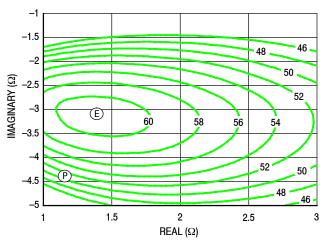
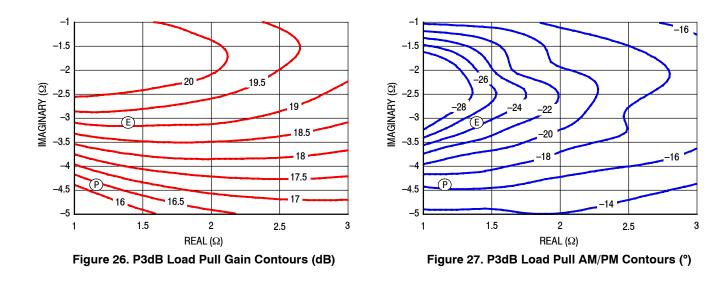
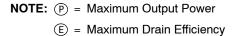
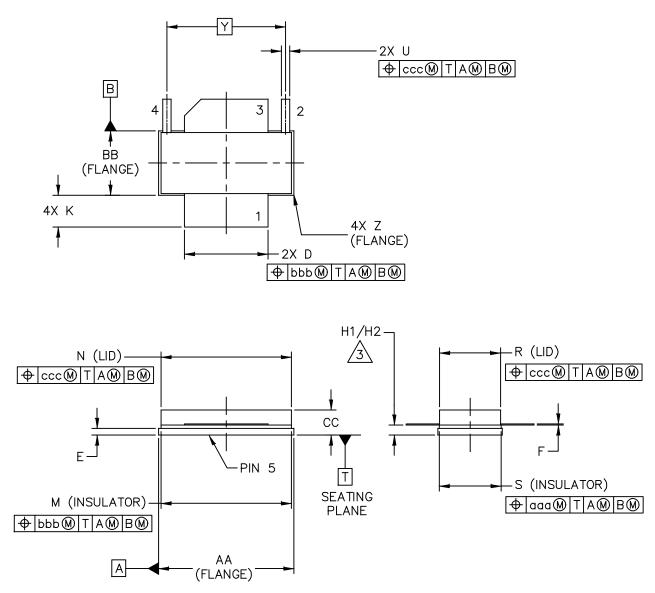




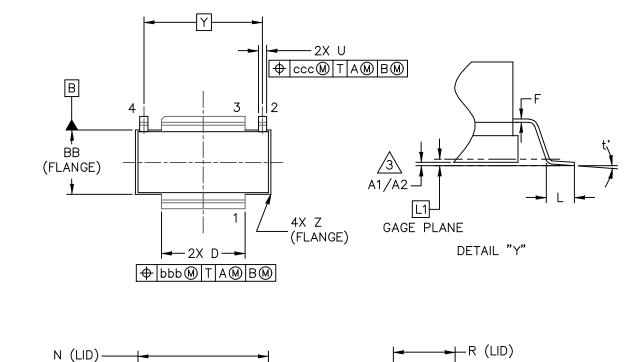
Figure 25. P3dB Load Pull Efficiency Contours (%)

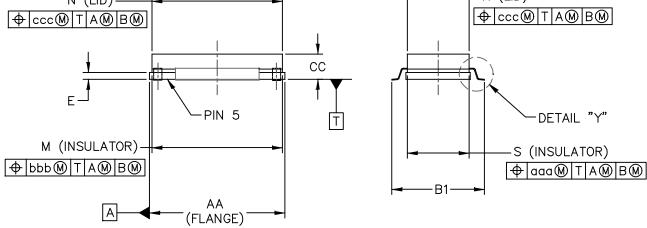


- Gain
 Gain
 Drain Efficiency
- _____ Linearity
- _____ Output Power

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMEN	NT NO: 98ASA00658D REV: 0		
NI-780S-2L2LA		STANDAF	ARD: NON-JEDEC		
			05 DEC 2014		


NOTES:


- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3.DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM THE FLANGETO CLEAR THE EPOXY FLOW OUT REGION PARALLEL TO DATUM B. H1 APPLIES TO PINS 1& 3. H2 APPLIES TO PINS 2 & 4.

	11	NCH	MIL	LIMETER			INCH	MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	МАХ
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
СС	.125	.170	3.18	4.32	U	.045	.055	1.14	1.40
D	.495	.505	12.57	12.83	Y	.7	10 BSC	18.0	3 BSC
Е	.035	.045	0.89	1.14	Z	R.000	R.040	R0.00	R1.02
F	.003	.007	0.08	0.18	aaa		.005	0.	13
H1	.057	.067	1.45	1.70	bbb		.010	0.25	
H2	.054	.070	1.37	1.78	ccc		.015	0.	38
К	.170	.210	4.32	5.33					
М	.774	.786	19.66	19.96					
Ν	.772	.788	19.61	20.02					
© I		EMICONDUCTOR, HTS RESERVED.	INC.	MECHANICA	L OU	ΓLINE	PRINT VERS	SION NOT TO	SCALE
TITLE:	:					DOCUME	NT NO: 98ASAC)0658D	REV: 0
	١	N−780S−	2L2LA			STANDAF	RD: NON-JEDEC	2	
	05 DEC 2014								

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT	TO SCALE	
TITLE:		DOCUMEN	IT NO: 98ASA00624D	REV: O	
NI-780GS-2L2LA			STANDARD: NON-JEDEC		
		05 DEC 2014			

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

DIMENSION A1/A2 IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM. A1 APPLIES TO PINS 1 AND 3. A2 APPLIES TO PINS 2 AND 4.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
A1	.002	.008	0.05	0.20	S	.365	.375	9.27	9.53
A2	.002	.008	0.05	0.20	U	.045	.055	1.14	1.40
BB	.380	.390	9.65	9.91	Y	.710 BSC		18.03 BSC	
B1	.546	.562	13.87	14.27	Z	R.000	R.040	R0.00	R1.02
СС	.125	.170	3.18	4.32	t۰	0.	8.	0.	8.
D	.495	.505	12.57	12.83	aaa		.005	0.13	
E	.035	.045	0.89	1.14	bbb	.010		0.25	
F	.003	.007	0.08	0.18	ccc	.015		0.38	
L	.038	.046	0.97	1.17					
L1	L1 .010 BSC		0.	25 BSC					
М	.774	.786	19.66	5 19.96					
N	.772	.788	19.61	20.02					
© I	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL			LOUT	TLINE PRINT VERSION NOT TO SCALE) SCALE	
TITLE:	TITLE:					DOCUMENT NO: 98ASA00624D REV: 0			
NI-780GS-2L2LA					STANDARD: NON-JEDEC				
					Ī	05 DEC 2014			

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

· AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
0	Apr. 2015	Initial Release of Data Sheet	

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2015 Freescale Semiconductor, Inc.

Document Number: AFT18S260W31S Rev. 0, 4/2015