Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DESCRIPTION

Monolithic temperature and overload protected power switch based on MOSFET technology in a 5 pin plastic envelope, configured as a single high side switch.

APPLICATIONS

General controller for driving lamps, motors, solenoids, heaters.

FEATURES

- Vertical power DMOS switch
- Low on-state resistance
- 5 V logic compatible input
- Overtemperature protection self resets with hysteresis
- Overload protection against short circuit load with output current limiting; latched - reset by input
- High supply voltage load protection
- Supply undervoltage lock out
- Status indication for overload protection activated
- Diagnostic status indication of open circuit load
- Very low quiescent current
- Voltage clamping for turn off of inductive loads
- ESD protection on all pins
- Reverse battery and overvoltage protection

PINNING - SOT263

PIN	DESCRIPTION
1	Ground
2	Input
3	Battery (+ve supply)
4	Status
5	Load
tab	connected to pin 3

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	UNIT
I_{L}	Nominal load current (ISO)	9	A
SYMBOL	PARAMETER	MAX.	UNIT
$V_{B G}$	Continuous off-state supply voltage	50	V
${ }_{\text {L }}$	Continuous load current	20	A
T_{j}	Continuous junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {ON }}$	On-state resistance	38	$\mathrm{m} \Omega$

FUNCTIONAL BLOCK DIAGRAM

Fig.1. Elements of the TOPFET HSS with internal ground resistor.

PIN CONFIGURATION

SYMBOL

PowerMOS transistor

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{BG}	Battery voltages Continuous off-state supply voltage	-	0	50	V
$\begin{array}{\|l\|l\|} \hline-V_{B G} \\ -V_{B G} \end{array}$	Reverse battery voltages ${ }^{1}$ Repetitive peak supply voltage Continuous reverse supply voltage	External resistors: $\begin{aligned} & \mathrm{R}_{\mathrm{I}}=\mathrm{R}_{\mathrm{S}} \geq 4.7 \mathrm{k} \Omega, \delta \leq 0.1 \\ & \mathrm{R}_{\mathrm{I}}=\mathrm{R}_{\mathrm{S}} \geq 4.7 \mathrm{k} \Omega \end{aligned}$	-	$\begin{aligned} & 32 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
$\begin{array}{\|l} \mathrm{I}_{\mathrm{L}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{~T}_{\text {stg }} \\ \mathrm{T}_{\mathrm{j}} \\ \mathrm{~T}_{\text {sold }} \end{array}$	Continuous load current Total power dissipation Storage temperature Continuous junction temperature ${ }^{2}$ Lead temperature	$\begin{aligned} & \mathrm{T}_{\mathrm{mb}} \leq 110^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{mb}} \leq 25^{\circ} \mathrm{C} \\ & - \\ & - \\ & \text { during soldering } \end{aligned}$	-55	$\begin{gathered} 20 \\ 125 \\ 175 \\ 150 \\ 250 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \end{gathered}$
$\left\lvert\, \begin{aligned} & l_{1} \\ & I_{\mathrm{s}} \\ & I_{1} \\ & I_{\mathrm{s}} \end{aligned}\right.$	Input and status Continuous input current Continuous status current Repetitive peak input current Repetitive peak status current	$\begin{aligned} & \delta \leq 0.1 \\ & \delta \leq 0.1 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \\ & -20 \\ & -20 \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 20 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{E}_{\text {BL }}$	Inductive load clamping Non-repetitive clamping energy	$\mathrm{T}_{\mathrm{mb}}=150{ }^{\circ} \mathrm{C}$ prior to turn-off	-	1.7	J

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{C}	Electrostatic discharge capacitor voltage	Human body model; $\mathrm{C}=250 \mathrm{pF} ; \mathrm{R}=1.5 \mathrm{k} \Omega$	-	2	kV

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Thermal resistance ${ }^{3}$					
$R_{\text {th } \mathrm{j}-\mathrm{mb}}$	Junction to mounting base	-	-	0.8	1	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}$	Junction to ambient	in free air	-	60	75	$\mathrm{~K} / \mathrm{W}$

[^0]
PowerMOS transistor

 TOPFET high side switch
STATIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\begin{aligned} & V_{\mathrm{BG}} \\ & \mathrm{~V}_{\mathrm{BL}} \\ & -\mathrm{V}_{\mathrm{LG}} \end{aligned}$	Clamping voltages Battery to ground Battery to load Negative load to ground	$\begin{aligned} & I_{G}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \\ & \mathrm{~L}_{\mathrm{L}}=1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 12 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 17 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 21 \end{aligned}$	
$V_{B G}$	Supply voltage Operating range ${ }^{1}$	battery to ground	5	-	40	V
$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \\ & \mathrm{I}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{G}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	Currents Nominal load current ${ }^{2}$ Quiescent current ${ }^{3}$ Operating current ${ }^{4}$ Off-state load current ${ }^{5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BL}}=0.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{mb}}=85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IG}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LG}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} ; \mathrm{L}_{\mathrm{L}}=0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BL}}=13 \mathrm{~V} ; \mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 9 \\ - \\ 1.5 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 2.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mu \mathrm{~A} \\ \mathrm{~mA} \\ \mu \mathrm{~A} \end{gathered}$
$\begin{aligned} & \mathrm{R}_{\mathrm{ON}} \\ & \mathrm{R}_{\mathrm{ON}} \\ & \mathrm{R}_{\mathrm{G}} \end{aligned}$	Resistances On-state resistance ${ }^{6}$ On-state resistance Internal ground resistance	$\begin{aligned} & V_{B G}=13 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=10 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{BG}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=2 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \\ & \mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA} \end{aligned}$	-	$\begin{gathered} 28 \\ 36 \\ 150 \end{gathered}$	38 48	$\mathrm{m} \Omega$ $\mathrm{m} \Omega$ Ω

INPUT CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{I}	Input current	$\mathrm{V}_{\text {IG }}=5 \mathrm{~V}$	35	60	100	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {IG }}$	Input clamping voltage	$\mathrm{I}_{\mathrm{I}}=200 \mu \mathrm{~A}$	6	7.5	8.5	V
$\mathrm{~V}_{\text {IG(ON) }}$	Input turn-on threshold voltage		-	2.1	2.7	V
$\mathrm{~V}_{\text {IG(OFF) }}$	Input turn-off threshold voltage		1.5	2	-	V

[^1]
PowerMOS transistor TOPFET high side switch

PROTECTION FUNCTIONS AND STATUS INDICATIONS

Truth table for normal, open-circuit load and overload conditions and abnormal supply voltages.

FUNCTIONS		TRUTH TABLE			THRESHOLD			UNIT
SYMBOL	CONDITION	INPUT	STATUS	OUTPUT	MIN.	TYP.	MAX.	
	Normal on-state	1	1	1				
	Normal off-state	0	1	0				
$\mathrm{L}_{\text {LOC) }}$	Open circuit load ${ }^{1}$	1	0	1	150	450	750	mA
	Open circuit load	0	1	0				
$\mathrm{T}_{\text {j(T) }}$	Over temperature ${ }^{2}$	1	0	0	150	175	-	${ }^{\circ} \mathrm{C}$
	Over temperature ${ }^{3}$	0	0	0				
$\mathrm{V}_{\text {BL(T) }}$	Short circuit load ${ }^{4}$	1	0	0	9	10.5	12	V
	Short circuit load	0	1	0				
$\mathrm{V}_{\text {BG(TO) }}$	Low supply voltage ${ }^{5}$	X	1	0	3	4	5	V
$\mathrm{V}_{\mathrm{BG}(\mathrm{P})}$	High supply voltage ${ }^{6}$	X	1	0	40	45	50	V

For input ' 0 ' equals low, ' 1 ' equals high, ' X ' equals don't care.
For status ' 0 ' equals low, ' 1 ' equals open or high.
For output switch ' 0 ' equals off, ' 1 ' equals on.

STATUS CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$.
The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{SG}	Status clamping voltage	$\mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V}$	6	7	8	V
$\mathrm{~V}_{\mathrm{SG}}$	Status low voltage	$\mathrm{I}_{\mathrm{S}}=50 \mu \mathrm{~V} ; \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V} ; \mathrm{V}_{\mathrm{IG}}=5 \mathrm{~V}$	-	0.7	0.8	V
I_{S}	Status leakage current	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$	-	0.1	1	$\mu \mathrm{~A}$
I_{S}	Status saturation current ${ }^{7}$	$\mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$	-	5	-	mA
	Application information					
R_{S}	External pull-up resistor 8	$\mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}$	-	100	-	$\mathrm{k} \Omega$

[^2]
DYNAMIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$-\mathrm{V}_{\text {LG }}$	Inductive load turn-off Negative load voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=10 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}$	15	20	25	V
$\begin{aligned} & \mathrm{t}_{\mathrm{dsc}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	Short circuit load protection ${ }^{2}$ Response time Load current prior to turn-off	$\begin{aligned} & \mathrm{V}_{\mathrm{IG}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}} \leq 10 \mathrm{~m} \Omega \\ & \mathrm{t}<\mathrm{t}_{\mathrm{dsc}} \end{aligned}$	-	$\begin{aligned} & 75 \\ & 50 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \mathrm{~A} \end{gathered}$
$\mathrm{I}_{\mathrm{L}(\mathrm{lim})}$	Overload protection ${ }^{3}$ Load current limiting	$\mathrm{V}_{\mathrm{BL}}=9 \mathrm{~V} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}$	34	45	64	A

SWITCHING CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$, for resistive load $\mathrm{R}_{\mathrm{L}}=13 \Omega$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$t_{d o n}$ $\mathrm{dV} / \mathrm{dt}_{\text {on }}$ t on	During turn-on Delay time Rate of rise of load voltage Total switching time	$\begin{aligned} & \text { to } \mathrm{V}_{\mathrm{IG}}=5 \mathrm{~V} \\ & \text { to } 10 \% \mathrm{~V}_{\mathrm{L}} \\ & \text { to } 90 \% \mathrm{~V}_{\mathrm{L}} \end{aligned}$	-	$\begin{gathered} 16 \\ 0.7 \\ 140 \end{gathered}$	2	$\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$
$t_{\text {d off }}$ $\mathrm{dV} / \mathrm{dt}_{\text {off }}$ $t_{\text {off }}$	During turn-off Delay time Rate of fall of load voltage Total switching time	$\begin{aligned} & \text { to } \mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V} \\ & \text { to } 90 \% \mathrm{~V}_{\mathrm{L}} \\ & \text { to } 10 \% \mathrm{~V}_{\mathrm{L}} \end{aligned}$	- - -	$\begin{gathered} 40 \\ 0.7 \\ 70 \end{gathered}$	2	$\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{S}$

CAPACITANCES

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C_{ig}	Input capacitance	$\mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$	-	15	20	pF
C_{bl}	Output capacitance	$\mathrm{V}_{\mathrm{BL}}=\mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$	-	500	700	pF
C_{sg}	Status capacitance	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$	-	11	15	pF

[^3]
PowerMOS transistor

Fig.4. High side switch measurements schematic. (current and voltage conventions)

Fig.5. Normalised limiting power dissipation. $P_{D} \%=100 \cdot P_{D} / P_{D}\left(25{ }^{\circ} \mathrm{C}\right)=f\left(T_{m b}\right)$

Fig.7. Typical on-state characteristics, $T_{j}=25^{\circ} \mathrm{C}$. $I_{L}=f\left(V_{B L}\right)$; parameter $V_{B G} ; t_{p}=250 \mu \mathrm{~s}$

Fig.8. Typical on-state resistance, $T_{j}=25{ }^{\circ} \mathrm{C}$. $R_{O N}=f\left(V_{B G}\right) ;$ conditions: $I_{L}=10 \mathrm{~A} ; t_{p}=300 \mu \mathrm{~s}$

Fig.9. Typical on-state resistance, $t_{p}=300 \mu \mathrm{~s}$. $R_{O N}=f\left(T_{j}\right) ;$ parameter $V_{B G} ;$ condition $I_{L}=2 \mathrm{~A}$

PowerMOS transistor
BUK202-50Y TOPFET high side switch

Fig.10. Typical supply characteristics, $25^{\circ} \mathrm{C}$. $I_{G}=f\left(V_{B G}\right)$; parameter $V_{I G}$

Fig.11. Typical operating supply current. $I_{G}=f\left(T_{j}\right)$; parameter $V_{B G}$; condition $V_{I G}=5 \mathrm{~V}$

Fig. 12. Typical supply quiescent current. $I_{B}=f\left(T_{j}\right)$; condition $V_{B G}=13 \mathrm{~V}, V_{I G}=0 \mathrm{~V}, V_{L G}=0 \mathrm{~V}$

Fig.13. Typical off-state leakage current. $I_{L}=f\left(T_{j}\right)$; conditions: $V_{B L}=13 \mathrm{~V}=V_{B G} ; V_{I G}=0 \mathrm{~V}$.

Fig.14. Typical input characteristics, $T_{j}=25^{\circ} \mathrm{C}$. $I_{I}=f\left(V_{I G}\right)$; parameter $V_{B G}$

Fig.15. Typical input current, $T_{j}=25^{\circ} \mathrm{C}$. $I_{I}=f\left(V_{B G}\right)$; condition $V_{I G}=5 \mathrm{~V}$

Fig.16. Typical input threshold voltages.
$V_{I G}=f\left(T_{j}\right)$; conditions $V_{B G}=13 \mathrm{~V}, I_{L}=100 \mathrm{~mA}$

Fig.17. Typical input clamping voltage.
$V_{I G}=f\left(T_{j}\right)$; conditions $I_{I}=200 \mu \mathrm{~A}, V_{B G}=13 \mathrm{~V}$

Fig.18. Typical status characteristic, $T_{j}=25^{\circ} \mathrm{C}$. $I_{S}=f\left(V_{S G}\right)$; conditions $V_{I G}=V_{B G}=0 \mathrm{~V}$

Fig.19. Typical status leakage current. $I_{S}=f\left(T_{j}\right)$; conditions $V_{S G}=5 \mathrm{~V}, V_{I G}=V_{B G}=0 \mathrm{~V}$

Fig.20. Typical status low characteristic, $T_{j}=25^{\circ} \mathrm{C}$. $I_{S}=f\left(V_{S G}\right)$; conditions $V_{I G}=5 \mathrm{~V}, V_{B G}=13 \mathrm{~V}, I_{L}=0 \mathrm{~A}$

Fig.21. Typical status low voltage, $V_{S G}=f\left(T_{j}\right)$. conditions $I_{S}=50 \mu A, V_{I G}=5 \mathrm{~V}, V_{B G}=13 \mathrm{~V}, I_{L}=0 \mathrm{~A}$

PowerMOS transistor

Fig.22. Typical status clamping voltage, $V_{S G}=f\left(T_{i}\right)$. parameter $V_{I G}$; conditions $I_{S}=100 \mu A, V_{B G}=13 \mathrm{~V}$

Fig.23. Low load current detection threshold. $I_{L(O C)}=f\left(T_{j}\right)$; conditions $V_{I G}=5 \mathrm{~V} ; V_{B G}=13 \mathrm{~V}$

Fig.24. Supply typical undervoltage thresholds. $V_{B G(T O)}=f\left(T_{j}\right)$; conditions $V_{I G}=3 \mathrm{~V} ; I_{L}=100 \mathrm{~mA}$

Fig.25. Supply typical overvoltage thresholds. $V_{B G(L P)}=f\left(T_{j}\right) ;$ conditions $V_{I G}=5 \mathrm{~V} ; I_{L}=100 \mathrm{~mA}$

Fig.26. Typical battery to ground clamping voltage. $V_{B G}=f\left(T_{j}\right) ;$ parameter I_{G}

Fig.27. Typical negative load clamping characteristic. $I_{L}=f\left(V_{L G}\right)$; conditions $V_{I G}=0 \mathrm{~V}, t_{p}=300 \mu \mathrm{~s}, 25^{\circ} \mathrm{C}$

PowerMOS transistor

Fig.28. Typical negative load clamping voltage. $V_{L G}=f\left(T_{j}\right)$; parameter $I_{L} ;$ condition $V_{I G}=0 \mathrm{~V}$.

Fig.29. Typical battery to load clamping voltage. $V_{B L}=f\left(T_{j}\right) ;$ parameter $I_{L} ;$ condition $I_{G}=5 \mathrm{~mA}$.

Fig.30. Typical reverse battery characteristic. $I_{G}=f\left(V_{B G}\right)$; conditions $I_{L}=0 \mathrm{~A}, T_{j}=25{ }^{\circ} \mathrm{C}$

Fig.31. Typical reverse diode characteristic. $I_{L}=f\left(V_{B L}\right)$; conditions $V_{I G}=0 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C}$

Fig.32. Typical output capacitance. $T_{m b}=25{ }^{\circ} \mathrm{C}$
$C_{b l}=f\left(V_{B L}\right)$; conditions $f=1 \mathrm{MHz}, V_{I G}^{m b}=0 \mathrm{~V}$

Fig.33. Typical overload characteristic, $T_{m b}=25^{\circ} \mathrm{C}$. $I_{L}=f\left(V_{B L}\right)$; condition $V_{B G}=13 \mathrm{~V}$; parameter t_{p}

Fig.34. Typical overload current, $V_{B L}=9 \mathrm{~V}$.
$I_{L}=f\left(T_{m b}\right)$; conditions $V_{B G}=13 \mathrm{~V} ; t_{p}=100 \mu \mathrm{~s}$

Fig.35. Typical short circuit load threshold voltage. $V_{B L(T))}=f\left(V_{B C}\right)$; condition $T_{m b}=25^{\circ} \mathrm{C}$

Fig.36. Typical short circuit load threshold voltage. $V_{B L(T))}=f\left(T_{\text {mb }}\right)$; condition $V_{B G}=13 \mathrm{~V}$

Fig.37. Transient thermal impedance.
$Z_{t h ;-m b}=f(t) ;$ parameter $D=t_{p} / T$

MECHANICAL DATA

Fig.38. SOT263 leadform 263-01;
pin 3 connected to mounting base.

Note

1. Refer to mounting instructions for TO220 envelopes.
2. Epoxy meets UL94 V0 at $1 / 8$ ".

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification. O Philips Electronics N.V. 1996 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

[^0]: 1 Reverse battery voltage is allowed only with external input and status resistors to limit the currents to a safe value.
 2 For normal continuous operation. A higher T_{j} is allowed as an overload condition but at the threshold $\mathrm{T}_{\mathrm{j}(\mathrm{To)}}$ the over temperature trip operates to protect the switch.
 3 Of the output Power MOS transistor.

[^1]: 1 On-state resistance is increased if the supply voltage is less than 9 V . Refer to figure 8.
 2 Defined as in ISO 10483-1.
 3 This is the continuous current drawn from the supply when the input is low and includes leakage current to the load.
 4 This is the continuous current drawn from the supply with no load connected, but with the input high.
 5 The measured current is in the load pin only.
 6 The supply and input voltage for the $R_{0 N}$ tests are continuous. The specified pulse duration t_{p} refers only to the applied load current.

[^2]: 1 In the on-state, the switch detects whether the load current is less than the quoted open load threshold current. This is for status indication only. Typical hysteresis equals 230 mA . The thresholds are specified for supply voltage within the normal working range.
 2 After cooling below the reset temperature the switch will resume normal operation. The reset temperature is lower than the trip temperature by typically $10^{\circ} \mathrm{C}$.

 3 If the overtemperature protection has operated, status remains low to indicate the overtemperature condition even if the input is taken low, providing the device has not cooled below the reset temperature.
 4 After short circuit protection has operated, the input voltage must be toggled low for the switch to resume normal operation.
 5 Undervoltage sensor causes the device to switch off. Typical hysteresis equals 0.5 V .
 6 Overvoltage sensor causes the device to switch off. Typical hysteresis equals 1.3 V.
 7 In a fault condition with the pull-up resistor short circuited while the status transistor is conducting.
 8 The pull-up resistor also protects the status pin during reverse battery conditions.

[^3]: 1 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load. This negative voltage is clamped by the device
 2 The load current is self-limited during the response time for short circuit load protection. Response time is measured from when input goes high.
 3 If the load resistance is low, but not a complete short circuit, such that the on-state voltage remains less than $\mathrm{V}_{\mathrm{BL}(\text { (To) }}$, the device remains in current limiting until the overtemperature protection operates.

