Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40244B
 buffers
 Octal buffers with 3-state outputs

Product specification
File under Integrated Circuits, IC04

PHILIPS

Octal buffers with 3-state outputs

DESCRIPTION

The HEF40244B is an octal non-inverting buffer with 3 -state outputs. It features output stages with high current output capability suitable for driving highly capacitive loads.

The 3-state outputs are controlled by the output enable inputs $\overline{\mathrm{EO}}_{\mathrm{A}}$ and $\overline{\mathrm{EO}}_{\mathrm{B}}$. A HIGH on $\overline{\mathrm{EO}}$ causes the outputs to assume a high impedance OFF-state. The device also features hysteresis on all inputs to improve noise immunity.
Schmitt-trigger action in the inputs makes the circuit highly tolerant to slower input rise and fall times.

The HEF40244B is pin and functionally compatible with the TTL '244' device.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF40244BP(N): 20-lead DIL; plastic (SOT146-1)
HEF40244BD(F): 20-lead DIL; ceramic (cerdip) (SOT152)
HEF40244BT(D): 20-lead SO; plastic (SOT163-1)
(): Package Designator North America

PINNING

$I_{A 1}$ to $I_{A 4}$	inputs
$I_{B 1}$ to $I_{B 4}$	inputs
$\mathrm{O}_{\mathrm{A} 1}$ to $\mathrm{O}_{\mathrm{A} 4}$	bus outputs
$\mathrm{O}_{\mathrm{B} 1}$ to $\mathrm{O}_{\mathrm{B} 4}$	bus outputs
$\overline{\mathrm{EO}}_{\mathrm{A}}, \overline{\mathrm{EO}}_{\mathrm{B}}$	output enable inputs (active LOW)

FAMILY DATA, IDD LIMITS category buffers

See Family Specifications

Fig. 3 Logic diagram (one buffer).

TRUTH TABLE

INPUTS		OUTPUT
$\mathrm{I}_{\mathbf{n}}$	$\overline{\text { EO }}$	$\mathbf{O}_{\boldsymbol{n}}$
H	L	H
L	L	L
X	H	Z

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$Z=$ high impedance off state

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).
See Family Specifications, except for:
D.C. current into any input
D.C. source or sink current into any output
D.C. current into the supply terminals

$\pm I_{1}$	max.	10 mA
$\pm I_{0}$	max.	25 mA
$\pm I$	max.	100 mA

DC CHARACTERISTICS
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

	V_{DD}	v_{OH}	V_{OL}	SYMBOL	Tamb $\left({ }^{\circ} \mathrm{C}\right)$				
					-40	+25		+85	
					MIN. TYP.	MIN.	TYP.	MIN.	TYP.
Output current	5	4,6		$-^{-1}$	0,75	0,6	1,2	0,45	mA
HIGH	10	9,5			1,85	1,5	3,0	1,1	mA
	15	13,5			14,5	15	50	15,5	mA
Output current	5	3,6		$-\mathrm{l}_{\mathrm{OH}}$	9,3	10	24	10,7	mA
HIGH	10	8,4			14,4	15	46	15,0	mA
	15	13,2			19,5	20	62	19,8	mA
Output current	5		0,4	lol	2,9	2,3	5,4	1,75	mA
LOW	10		0,5		9,5	7,6	17	5,50	mA
	15		1,5		30,0	25	45	19,0	mA
Hysteresis	5			V_{H}			220		mV
voltage	10						250		mV
(any input)	15						320		mV

$\left(V_{D D}-V_{O H}\right)(V)$

(1) P-channel MOS transistor conducting.
(2) P-channel MOS transistor and bipolar $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor conducting.

Fig. 4 Typical output source current characteristic.

Fig. 5 Schematic diagram of output stage.

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

ALL BUFFERS	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
SWITCHING	\mathbf{V}		
Dynamic power	5	$4250 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$17000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$46000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Octal buffers with 3-state outputs

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

Fig. 6 Output transition times as a function of the load capacitance.

