
DISCRETE SEMICONDUCTORS

Product specification

August 1986

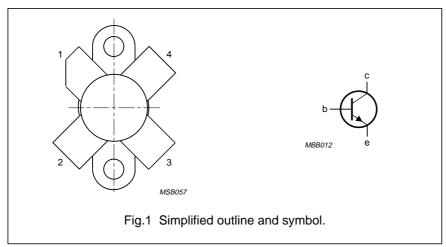
Philips Semiconductors

BLW50F

DESCRIPTION

N-P-N silicon planar epitaxial transistor primarily intended for use in class-A, AB and B operated, industrial and military transmitters in the h.f. and v.h.f. band. Resistance stabilization provides protection against device damage at severe load mismatch conditions. Matched h_{FE} groups are available on request. It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA


R.F. performance

MODE OF OPERATION	V _{CE} V	f MHz	P _L W	G _p dB	ղ _{dt} %	l _C A	I _{C(ZS)} mA	d₃ dB	T _h °C
s.s.b. (class-A)	45	1,6 - 28	0 - 16 (P.E.P.)	> 19,5	-	1,2	-	< -40	70
s.s.b. (class-AB)	50	1,6 - 28	10 - 65 (P.E.P.)	typ. 18	typ. 45 ⁽¹⁾	1,45	50	typ. –30	25

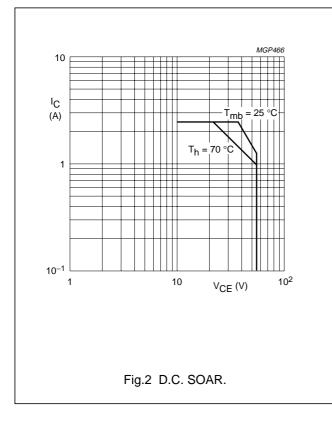
Note

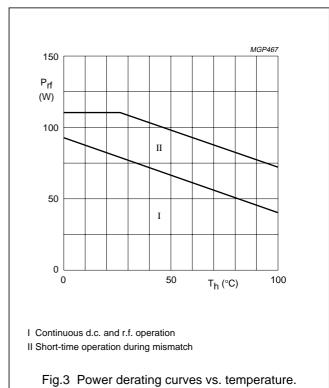
1. At 65W P.E.P.

PIN CONFIGURATION

PINNING - SOT123

PIN	DESCRIPTION		
1	collector		
2	emitter		
3	base		
4	emitter		


PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.


BLW50F

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage ($V_{BF} = 0$)				
peak value	V _{CESM}	max.	110	V
Collector-emitter voltage (open base)	V _{CEO}	max.	55	V
Emitter-base voltage (open collector)	V _{EBO}	max.	4	V
Collector current (average)	I _{C(AV)}	max.	2,5	А
Collector current (peak value); f > 1 MHz	I _{CM}	max.	7,5	А
D.C. and r.f. (f > 1 MHz) power dissipation; T_{mb} = 25 °C	P _{tot} ; P _{rf}	max.	94	W
Storage temperature	T _{stg}	–65 to	o + 150	°C
Operating junction temperature	Tj	max.	200	°C

THERMAL RESISTANCE

(dissipation = 54 W; T_{mb} = 86 °C, i.e. T_{h} = 70 °C)

From junction to mounting base

(d.c. and r.f. dissipation)

From mounting base to heatsink

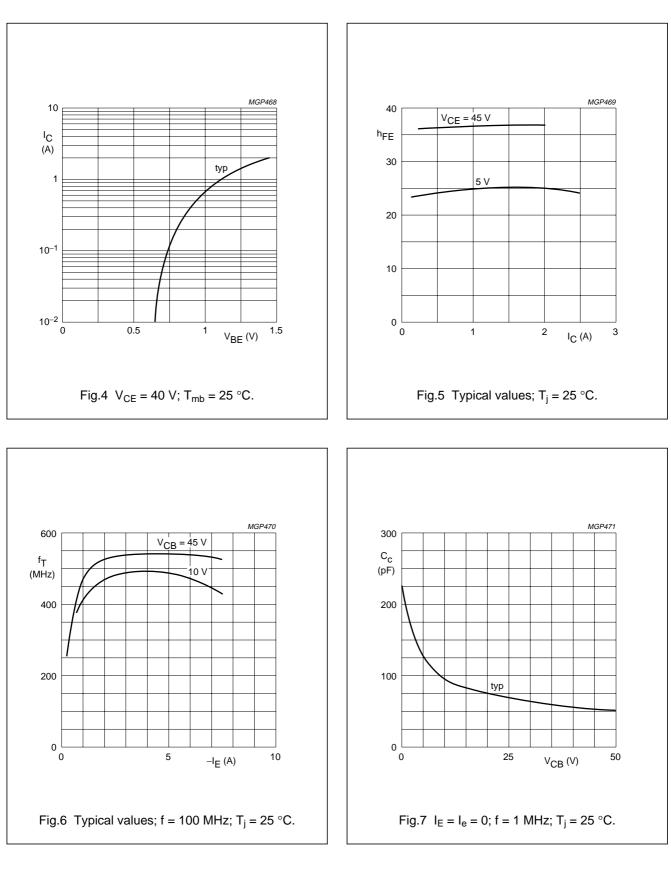
R _{th j-mb}	=	2,1 K/W
R _{th mb-h}	=	0,3 K/W

August 1986

CHARACTERISTICS

HF/VHF power transistor

BLW50F

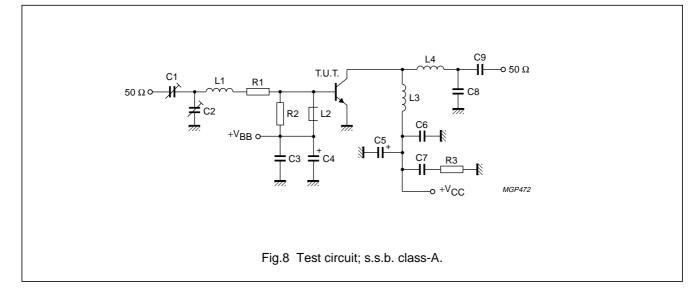

T _j = 25 °C				
Collector-emitter breakdown voltage				
$V_{BE} = 0; I_{C} = 25 \text{ mA}$	V _{(BR) CES}	>	110	V
Collector-emitter breakdown voltage				
open base; I _C = 100 mA	V _(BR) CEO	>	55	V
Emitter-base breakdown voltage				
open collector; I _E = 10 mA	V _{(BR)EBO}	>	4	V
Collector cut-off current				
$V_{BE} = 0; V_{CE} = 55 V$	I _{CES}	<	10	mA
Second breakdown energy; L = 25 mH; f = 50 Hz				
open base	E _{SBO}	>	8	mJ
$R_{BE} = 10 \ \Omega$	E _{SBR}	>	8	mJ
D.C. current gain ⁽¹⁾				
		typ.	25	
$l_{c} = 1.2 \text{ A}^{\circ} \text{ V}_{c_{c}} = 5 \text{ V}$	ncc			
$I_{C} = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$	h _{FE}	15 to	o 100	
D.C. current gain ratio of matched devices ⁽¹⁾	NFE	15 to	o 100	
D.C. current gain ratio of matched devices ⁽¹⁾ $I_{C} = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$	n _{FE} h _{FE1} /h _{FE2}	15 to <	o 100 1,2	
D.C. current gain ratio of matched devices ⁽¹⁾				
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 \text{ A}; I_B = 0,6 \text{ A}$				V
D.C. current gain ratio of matched devices ⁽¹⁾ $I_{C} = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾	h _{FE1} /h _{FE2}	<	1,2	V
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 \text{ A}; I_B = 0,6 \text{ A}$	h _{FE1} /h _{FE2}	<	1,2 1,2	V MHz
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 \text{ A}; I_B = 0,6 \text{ A}$ Transition frequency at f = 100 MHz ⁽¹⁾	h _{FE1} /h _{FE2} V _{CEsat}	< typ.	1,2 1,2 490	
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 \text{ A}; I_B = 0,6 \text{ A}$ Transition frequency at f = 100 MHz ⁽¹⁾ $-I_E = 1,2 \text{ A}; V_{CB} = 45 \text{ V}$	h _{FE1} /h _{FE2} V _{CEsat} f _T	< typ. typ.	1,2 1,2 490	MHz
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1, 2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3, 0 \text{ A}; I_B = 0, 6 \text{ A}$ Transition frequency at f = 100 MHz ⁽¹⁾ $-I_E = 1, 2 \text{ A}; V_{CB} = 45 \text{ V}$ $-I_E = 4, 0 \text{ A}; V_{CB} = 45 \text{ V}$	h _{FE1} /h _{FE2} V _{CEsat} f _T	< typ. typ.	1,2 1,2 490	MHz MHz
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 A; V_{CE} = 5 V$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 A; I_B = 0,6 A$ Transition frequency at f = 100 MHz ⁽¹⁾ $-I_E = 1,2 A; V_{CB} = 45 V$ $-I_E = 4,0 A; V_{CB} = 45 V$ Collector capacitance at f = 1 MHz	h _{FE1} /h _{FE2} V _{CEsat} f _T f _T	< typ. typ. typ.	1,2 1,2 490 540	MHz MHz
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 \text{ A}; V_{CE} = 5 \text{ V}$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 \text{ A}; I_B = 0,6 \text{ A}$ Transition frequency at f = 100 MHz ⁽¹⁾ $-I_E = 1,2 \text{ A}; V_{CB} = 45 \text{ V}$ $-I_E = 4,0 \text{ A}; V_{CB} = 45 \text{ V}$ Collector capacitance at f = 1 MHz $I_E = I_e = 0; V_{CB} = 45 \text{ V}$	h _{FE1} /h _{FE2} V _{CEsat} f _T f _T	< typ. typ. typ.	1,2 1,2 490 540	MHz MHz pF
D.C. current gain ratio of matched devices ⁽¹⁾ $I_C = 1,2 A; V_{CE} = 5 V$ Collector-emitter saturation voltage ⁽¹⁾ $I_C = 3,0 A; I_B = 0,6 A$ Transition frequency at f = 100 MHz ⁽¹⁾ $-I_E = 1,2 A; V_{CB} = 45 V$ $-I_E = 4,0 A; V_{CB} = 45 V$ Collector capacitance at f = 1 MHz $I_E = I_e = 0; V_{CB} = 45 V$ Feedback capacitance at f = 1 MHz	h _{FE1} /h _{FE2} V _{CEsat} f _T f _T C _c	< typ. typ. typ.	1,2 1,2 490 540 53 35	MHz MHz pF

Note

1. Measured under pulse conditions: $t_p \leq 200 \ \mu s; \ \delta \leq 0,02.$

BLW50F

HF/VHF power transistor


August 1986

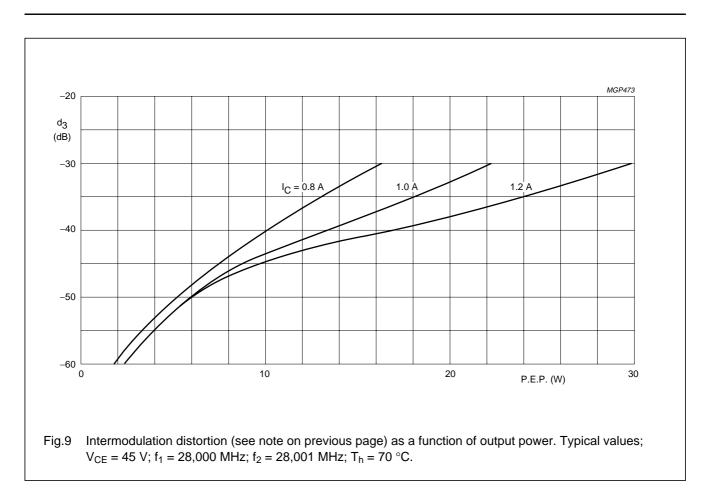
BLW50F

APPLICATION INFORMATION

R.F. performance in s.s.b. class-A operation (linear power amplifier) $V_{CE} = 45 \text{ V}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}$

OUT	TPUT POWER W	G _p dB		l _C A	d ₃ (1) dB	d ₅ (1) dB	T _h °C
>	16 (P.E.P.)	>	19,5	1,2	-40	< -40	70
typ.	17 (P.E.P.)	typ.	20,5	1,2	-40	< -40	70

List of components in Fig.8:

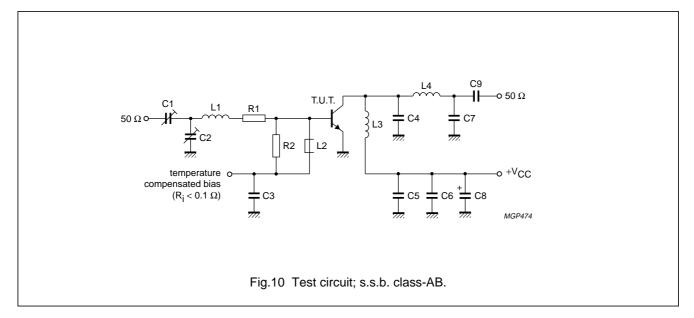

- C1 = C2 = 10 to 780 pF film dielectric trimmer
- C3 = 22 nF ceramic capacitor (63 V)
- C4 = $4,7 \,\mu\text{F}/16 \,\text{V}$ electrolytic capacitor
- C5 = 1 µF/75 V solid tantalum capacitor
- C6 = C7 = 47 nF polyester capacitor (100 V)
- C8 = 68 pF ceramic capacitor (500 V)
- C9 = 3,9 nF ceramic capacitor
- L1 = 3 turns closely wound enamelled Cu wire (1,0 mm); int. dia 9,0 mm; leads 2 × 5 mm
- L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
- L3 = 1,05 μ H; 15 turns enamelled Cu wire (1,0 mm); int. dia. 10 mm; length 17,4 mm; leads 2 \times 5 mm
- L4 = 162 nH; 6 turns enamelled Cu wire (1,0 mm); int. dia. 7,0 mm; length 11,6 mm; leads 2×5 mm
- R1 = 1,6 Ω ; parallel connection of 3 × 4,7 Ω carbon resistors (± 5%; 0,125 W)
- R2 = 47 Ω carbon resistor (± 5%; 0,25 W)
- R3 = 4,7 Ω carbon resistor (± 5%; 0,25 W)

Note

Downloaded from Arrow.com.

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

August 1986

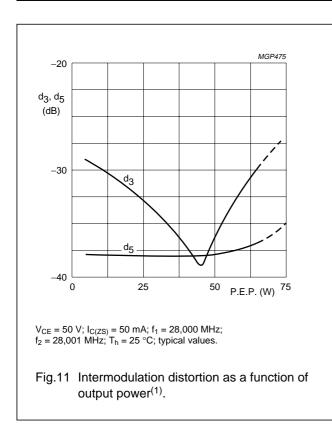

Downloaded from Arrow.com.

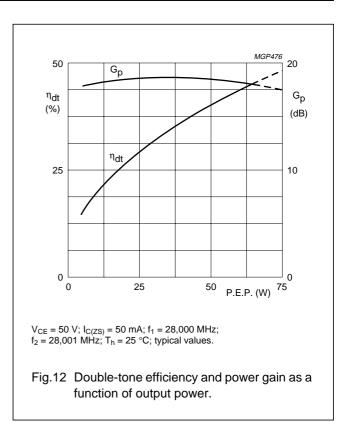
BLW50F

BLW50F

R.F. performance in s.s.b. class-AB operation (linear power amplifier) $V_{CE} = 50 \text{ V}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}$

OUTPUT POWER	G _p	ղ _{dt} (%)	I _C (A)	d ₃ (1)	d ₅ (1)	I _{C(ZS)}	T _h
W	dB	AT 65 V	N P.E.P.	dB	dB	mA	°C
10 to 65 (P.E.P.)	typ. 18	typ. 45	typ. 1,45	typ. –30	< -30	50	25

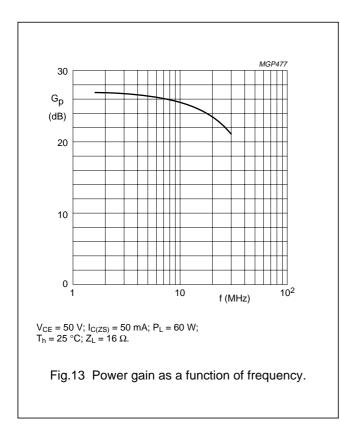

List of components:


- C1 = C2 = 10 to 780 pF film dielectric trimmer
- C3 = C5 = C6 = 220 nF polyester capacitor
- C4 = 120 pF ceramic capacitor (500 V)
- C7 = 150 pF ceramic capacitor (500 V)
- C8 = $47\mu F/63$ V electrolytic capacitor
- C9 = 3,9 nF ceramic capacitor
- L1 = 4 turns closely wound enamelled Cu wire (1,6 mm); int. dia 7,0 mm; leads 2 × 5 mm
- L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat.no. 4312 020 36640)
- L3 = 9 turns enamelled Cu wire (1,0 mm); int. dia. 10 mm; length 14,5 mm; leads 2 × 5 mm
- L4 = 6 turns enamelled Cu wire (1,0 mm); int. dia. 6,5 mm; length 11,0 mm; leads 2 × 5 mm
- R1 = $2,4 \Omega$; parallel connection of $2 \times 4,7 \Omega$ carbon resistors
- R2 = 39Ω carbon resistor

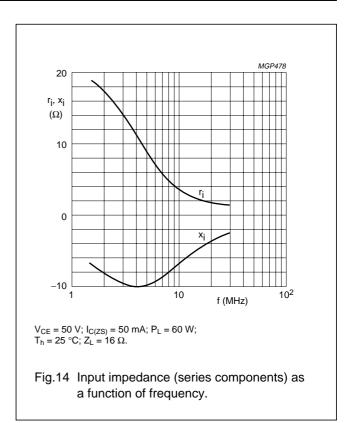
Note

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

BLW50F

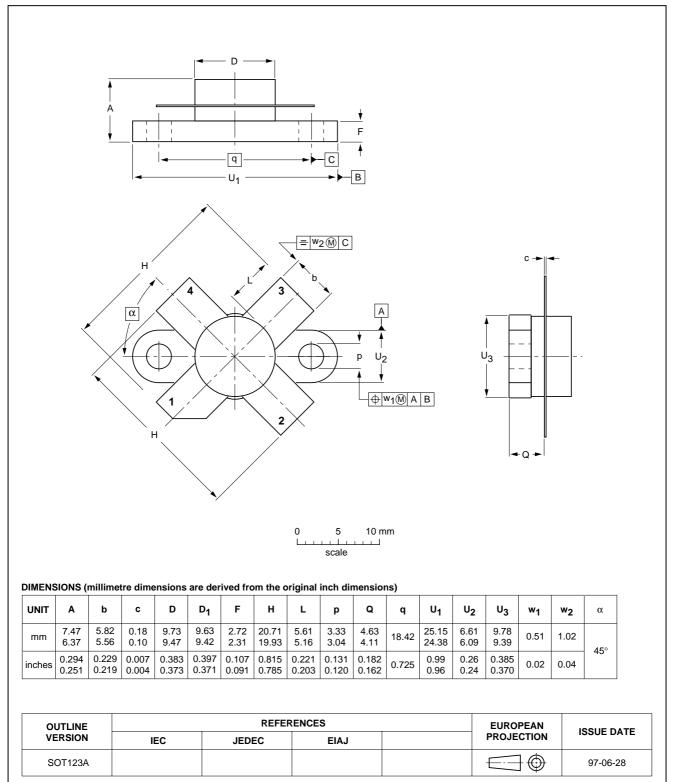


Ruggedness in s.s.b. operation


The BLW50F is capable of withstanding full load mismatch (VSWR = 50 through all phases) up to 45 W (P.E.P.) under the following conditions:

 $V_{CE} = 50 \text{ V}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}; T_h = 70 \text{ }^\circ\text{C}; R_{th mb-h} = 0,3 \text{ K/W}.$

BLW50F



Figs 13 and 14 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.

PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 4 leads

Downloaded from Arrow.com.

BLW50F

SOT123A

BLW50F

Product specification

DEFINITIONS

Data Sheet Status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.